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Abstract
This exploratory paper highlights how problem-based 
learning (PBL) provided the pedagogical framework 
used to design and interpret learning analytics from 
Crystal Island: EcoJourneys, a collaborative 
game-based learning environment centred on support-
ing science inquiry. In Crystal Island: EcoJourneys, 
students work in teams of four, investigate the problem 
individually and then utilize a brainstorming board, an in-
game PBL whiteboard that structured the collaborative 
inquiry process. The paper addresses a central ques-
tion: how can PBL support the interpretation of the ob-
served patterns in individual actions and collaborative 
interactions in the collaborative game-based learning 
environment? Drawing on a mixed method approach, 
we first analyzed students' pre- and post-test results to 
determine if there were learning gains. We then used 
principal component analysis (PCA) to describe the pat-
terns in game interaction data and clustered students 
based on the PCA. Based on the pre- and post-test 
results and PCA clusters, we used interaction analysis 
to understand how collaborative interactions unfolded 
across selected groups. Results showed that students 
learned the targeted content after engaging with the 
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game-based learning environment. Clusters based on 
the PCA revealed four main ways of engaging in the 
game-based learning environment: students engaged 
in low to moderate self-directed actions with (1) high and 
(2) moderate collaborative sense-making actions, (3) 
low self-directed with low collaborative sense-making 
actions and (4) high self-directed actions with low col-
laborative sense-making actions. Qualitative interac-
tion analysis revealed that a key difference among four 
groups in each cluster was the nature of verbal student 
discourse: students in the low to moderate self-directed 
and high collaborative sense-making cluster actively 
initiated discussions and integrated information they 
learned to the problem, whereas students in the other 
clusters required more support. These findings have im-
plications for designing adaptive support that responds 
to students' interactions with in-game activities.

K E Y W O R D S
collaboration, game-based learning, learning analytics, problem-
based learning

Practitioner notes

What is already known about this topic
•	 Learning analytic methods have been effective for understanding student learning 

interactions for the purposes of assessment, profiling student behaviour and the 
effectiveness of interventions.

•	 However, the interpretation of analytics from these diverse data sets are not always 
grounded in theory and challenges of interpreting student data are further compounded 
in collaborative inquiry settings, where students work in groups to solve a problem.

What this paper adds
•	 Problem-based learning as a pedagogical framework allowed for the design to focus 

on individual and collaborative actions in a game-based learning environment and, in 
turn, informed the interpretation of game-based analytics as it relates to student's self-
directed learning in their individual investigations and collaborative inquiry discussions.

•	 The combination of principal component analysis and qualitative interaction analy-
sis was critical in understanding the nuances of student collaborative inquiry.

Implications for practice and/or policy
•	 Self-directed actions in individual investigations are critical steps to collaborative 

inquiry. However, students may need to be encouraged to engage in these actions.
•	 Clustering student data can inform which scaffolds can be delivered to support 

both self-directed learning and collaborative inquiry interactions.
•	 All students can engage in knowledge-integration discourse, but some students 

may need more direct support from teachers to achieve this.
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INTRODUCTION

Over the last decade, learning analytics research has developed methods for analyzing 
student trace data, or data derived from student interactions in online learning environments 
(Gašević et al., 2016). Learning analytics from game-based learning environments provide 
researchers with multiple streams of data about student learning interactions for the pur-
poses of assessment, profiling student behaviour and the effectiveness of interventions 
(Alonso-Fernández, Calvo-Morata, et al., 2019; Emerson et al., 2020; Geden et al., 2020). 
However, the interpretation of analytics from these data sets are not always grounded in 
theory, and challenges of interpreting student data are further compounded in collabora-
tive inquiry settings, where students work in groups to solve a problem (Bell et al., 2010; 
Dillenbourg, 1999; Mangaroska & Giannakos, 2018). Fortunately, sociocultural pedagogical 
approaches such as problem-based learning (PBL) can inform the design of game-based 
learning environments and support the interpretation of learning analytics from these envi-
ronments (Saleh et al., 2020).

PBL is a student-centered instructional approach that aims to develop students' individual 
and collaborative problem-solving skills (Savery, 2019). Research in computer-supported 
environments for PBL has focused on how embedded tools support learning, the role of 
scaffolds and the overall impact of the learning environment on learning (Kim et al., 2018; 
Liu et  al.,  2014). Although PBL can be effective in supporting learning in traditional and 
computer-supported environments, there is a need to generate an explanatory learning 
model that maps individual and collaborative actions in game-based learning environments 
to student performances (Alonso-Fernández, Cano, et al., 2019; Archer & Prinsloo, 2020; 
Koedinger et  al.,  2012). An explanatory learner model can highlight how we might infer 
learner actions based on the patterns in the data (Rosé et al., 2019). Because explanatory 
learning models require extensive human effort, analytics provide a data-driven approach 
to understand the intersection between theory and learning (Liu & Koedinger, 2017). Thus, 
the goals of this research are to understand how PBL (1) can support content learning out-
comes and (2) guide the design and interpretation of analytics from game-based learning 
environments. Ultimately, we aim to generate an initial explanatory learning model that ac-
counts for the patterns of individual and collaborative interactions (Rosé et al., 2019). Our 
research questions are: (1) To what extent did the PBL-informed game-based learning envi-
ronment support content learning? (2) How did individual and collaborative participation in 
the problem-solving process differ among students?

We first briefly describe PBL and then highlight how PBL shaped the design of the col-
laborative game-based learning environment, Crystal Island: EcoJourneys, which pro-
vided a rich problem context for middle school students to learn about ecosystems. We then 
articulate our mixed method approach to address the research questions, highlighting how 
quantitative analyses informed our selection of cases for qualitative analysis. Subsequently, 
we report learning gains and articulated how the combination of the PBL environment and 
facilitators may have supported student learning before discussing the implications of our 
work.

Problem-based learning

As a pedagogical framework, PBL supports the collaborative inquiry processes among 
groups of students. In PBL, students work in small groups consisting of four to seven stu-
dents to solve complex, ill-structured problems (Jonassen & Hung, 2008). In PBL, students 
work in small groups and engage in an inquiry process that consists of (1) understanding 
the problem scenario, (2) identifying learning issues (i.e., what the group needs to learn 
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more about to solve the problem), (3) collecting information and identifying relevant facts, 
(4) generating and testing hypotheses and (5) providing explanations (Hmelo-Silver, 2004; 
Tawfik & Kolodner, 2016). To be successful in collaborative learning, students must be able 
to engage in two essential practices: (1) self-directed learning and (2) collaborative actions 
such as sharing and negotiating ideas with peers (Barrows, 1983).

Because students face challenges linked to individual and collaborative learning pro-
cesses, PBL provides several ways to support learning (Hmelo-Silver & Eberbach, 2012; 
Jonassen, 2011; Kim et al., 2018; Savery, 2019). First, the phases of inquiry help students 
manage their self-directed or individual learning process by allowing them to focus on spe-
cific activities during each phase such as data collection and analyzing the data (Wijnia 
et al., 2019). Moreover, students must reflect on their own learning and develop self-directed 
learning skills (Barrows, 1983; Hmelo-Silver, 2004). Second, the facilitator plays a critical 
role by encouraging group accountability to reasoning processes and ensuring that individual 
students respond to ideas generated by members in the classroom community (O’Connor & 
Michaels, 2019). Finally, when engaging with complex problems, groups make their thinking 
and processes visible, for example, while using a whiteboard, which provides a space for 
students to co-construct knowledge and regulate collaboration (Hmelo-Silver, 2006). At the 
whiteboard, students record and negotiate evolving ideas, structure their reasoning and pri-
oritize the focus of discussion related to the problems. A typical whiteboard may include the 
following elements: a space to share facts, ideas, learning issues and action plans (Hmelo-
Silver & Eberbach, 2012). During the inquiry process, students negotiate what ideas need 
to be on the board and what ought to be removed. In our work, an in-game PBL whiteboard 
called the brainstorming board, is the locus of social interactions (Saleh et al., 2020).

CRYSTAL ISLAND: ECOJOURNEYS

In Crystal Island: EcoJourneys, students take on the role of middle schoolers who are 
on a cultural exchange trip to Buglas, a fictional island in the Philippines. Students work in 
groups of four and learn about ecosystems and systems thinking by engaging in problem 
solving. Students are tasked to engage in a parallel investigation alongside the locals and 
reason about why fish at a local hatchery are sick. In the game-based learning environment, 
students talk to in-game characters and interact with objects to collect information related to 
the problem (Figure 1). Students use in-game tools such as a task-list, a notebook and chat 
to communicate with their peers.

Using PBL to design and interpret learning analytics

To align our work with principles of PBL, we navigated a tension between structuring a 
complex problem with multiple necessary related elements while considering what might 
overburden students (Jonassen & Hung, 2008). Because ecosystems and systems thinking 
can be a complex phenomenon for middle school students, the design of the problem space 
was less ill-structured than in typical PBL problems. For example, rather than engaging in in-
dependent investigations using web-based or database searches as learners would in medi-
cal school contexts (Bridges et al., 2012), the middle school students were guided in their 
investigations by prompts from facilitators and structured in-game activities that aligned to 
the PBL inquiry process (Table 1, for more details on the scaffolds, see Saleh et al., 2020). 
The ill-structured problem was designed such that there are multiple paths toward a similar 
conclusion (Yoon et al., 2018). To support the effective interpretations of the game-based 
learning analytics using PBL, we identified two key PBL inquiry processes: (1) self-directed 
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learning as part of the process of individual investigations and (2) jointly brainstorming ideas 
and discussing the information using the brainstorming board. Students in the game en-
gaged in three iterative cycles. Each cycle began with the self-directed investigation phase 
and concluded with the brainstorming phase (Table 1).

During the individual investigative phases, the game narrative provided the context for 
students to collect evidence to address the problem. The individual or the self-directed 
learning phase involves several important skills: (1) enacting metacognitive awareness (i.e., 
identifying what learners do or do not know), (2) establishing learning goals and (3) planning 
and selecting appropriate learning strategies (Hmelo-Silver, 2004). To support metacogni-
tive awareness and goal setting, students used an in-game task list that reminds them what 
they need to do next (Figure 1). The task list offered students different ways of engaging 
in the task and helped determine what they do or do not know. To support student use of 

F I G U R E  1   Overview of tools in Crystal Island: EcoJourneys

Chat Task list Notebook

TA B L E  1   Sequence of the PBL process in Crystal Island: EcoJourneys

PBL phases in game Self-directed and collaborative inquiry practices

Phase 1.1 Self-directed investigation 1 •	 Orient to the problem (i.e., fish are sick) by meeting in-
game characters

•	 Identify learning issues related to the needs of tilapia fish

Phase 1.2 Collaborative brainstorming board 
session 1 (BBS1)

•	 Share initial findings and conceptualize the problem
•	 Discuss and come to consensus about ideas that may 

not be salient
•	 Complete phase 1 and move to phase 2

Phase 2.1 Self-directed investigation 2 Explore and collect more data from the game-based 
learning environment to support initial ideas

Phase 2.2 Collaborative brainstorming board 
session 2 (BBS2)

•	 Use the brainstorming board again to communicate 
findings, negotiate ideas, and consider the evidence

•	 Eliminate ideas that are not salient
•	 Complete phase 2 and move to phase 3

Phase 3.1 Self-directed investigation 3 •	 Explore and collect more data from the game-based 
learning environment to support initial ideas

Phase 3.2 Collaborative brainstorming board 
session 3 (BBS3)

•	 Use the brainstorming board again to discuss new 
information and connect it to prior data

•	 Finalize a hypothesis

Conclude •	 Communicate findings and explanations to other teams
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different learning strategies and knowledge construction, each student in the group was 
assigned one of four storylines within the game narrative, wherein students met different 
in-game characters who shared different perspectives of the problem (Aronson, 2002). As 
part of their investigations in the game-based learning environment, students talk to different 
in-game characters and explore different parts of the island. All students were introduced 
to the basic concepts related to the problem. For instance, all students were introduced to 
the biotic (e.g., tilapia fish and cyanobacteria) and abiotic components (e.g., water and dis-
solved oxygen) in an aquatic ecosystem. However, students also developed individualized 
expertise to enable division of labour and group interdependence. For example, one student 
learned more about water quality, whereas another gathered additional information about 
dissolved oxygen. As they gathered information, students shared their findings informally 
using the in-game chat or more formally as part of the brainstorming board phase.

After individual students collected data in their investigation phases, they engaged in 
brainstorming sessions with their group members. As a semi-structured collaborative space, 
the brainstorming board helped groups engage in complex problem-solving processes by 
structuring groups' complex inquiry, supporting reasoning practices and keeping collabora-
tive inquiry learning on track (see Figure 2). The board contained five columns, listing ideas 
relevant to the well-being of the tilapia: Air, water quality, food, space, and temperature.

At the board, students placed and sorted notes that they collected in the appropriate idea 
column. Students can click on these notes to examine detailed information and voted on the 
relevance of the note to the associated idea. If all students agreed, the note turned green. If 
there were disagreements, the note turned red. If any students voted ‘may be relevant’, the 
note remained orange. The board provided students and facilitators with a visual indicator of 
the team's current consensus about their collection of notes. Students could also initiate a 
vote to remove ideas from the board and other members provided explanations on whether 

F I G U R E  2   The five ideas and group agreement as indicated by the colour-coded notes. Green means 
that all students agree, red means there is at least one disagreement and orange means at least one student 
indicated that the note may be relevant to the core ideas
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they agreed or disagreed to remove the idea from discussion. Students' discussion was 
facilitated by the design of the brainstorming board and a facilitator who guided students' dis-
cussion. Consistent with PBL, the facilitator guided student inquiry by marking information 
that was relevant to students and prompting students to elaborate their thinking (Resnick 
et al., 2018; Van de Pol et al., 2010).

In summary, PBL provided the theoretical grounding for student interactions in the game-
based learning environment by articulating actions that must be supported as part of self-
directed learning and collaborative problem-solving. For instance, in-game actions such 
as collecting information were assumed to be part of the self-directed learning process, 
whereas sharing information mapped on to collaborative inquiry learning. To understand the 
impact of the design, we investigated these research questions: (1) To what extent did the 
PBL-informed game-based learning environment support content learning? (2) How did indi-
vidual and collaborative participation in the problem-solving process differ among students?

METHODS

To answer our research questions, we engaged in a mixed-method analysis, beginning with 
quantitative analysis and followed by qualitative analysis. We first conducted mixed ANOVA 
analysis to understand individual and group ecosystems learning outcomes. Subsequently, 
we conducted a principal component analysis (PCA) and used the PCA results to perform 
a cluster analysis using k-means clustering to explore patterns from the log files of student 
actions in the game-based learning environment. Finally, qualitative interaction analysis was 
conducted to examine student collaboration (Jordan & Henderson, 1995).

Participants

This study was conducted in a rural school in Midwestern United States, where students 
participated in nine 55-minutes classroom sessions. In total, 45 sixth-grade students (11–
12 years old, 23 males, 22 females, all self-identified) consented, but only 39 had complete 
data (i.e., no missing log data and pre- and post-tests). We used quasi-random assignment, 
allocating students based on factors such as competencies in collaboration and student 
grades in science, reading and writing. Each group had diverse collaborative and science 
competencies, and similar reading and writing competencies. Students worked in groups 
of 4–5 and each group had a trained human facilitator to support small group work. The 
facilitator used the in-game chat and delivered prompts to students that supported their col-
laborative inquiry work. Depending on the needs of the students, the facilitator also engaged 
in face-to-face discussion to clarify confusion (For details of how facilitators scaffolded the 
learning process, please see Saleh et al., 2020).

Procedures

Before playing the game, students completed a pre-test. During the second session, stu-
dents discussed group norms to define collaboration and signed a group contract. For the 
next six sessions, students engaged in Crystal Island: EcoJourneys. During the last 
session, students created written explanations as to why the tilapia were sick and completed 
a post-test.
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Sources of data

There were four main sources of data: pre- and post- content tests, video data of group in-
teractions, written artifacts, and game interaction data. To determine if students learned the 
targeted content, students took the same pre- and post-test. There were a total of 13 ques-
tions measuring ecosystems content understanding in the test. The test consisted of two 
multiple-choice questions, five fill-in-the-blank questions, one performance-based question, 
three short-answer and two open-ended questions. The items were derived from NAEP test 
banks and prior studies (Hmelo-Silver et al., 2017; Jordan et al., 2014) and externally vali-
dated through review by an ecosystems expert. This external reviewer then evaluated and 
provided feedback on the structure, language and potential student responses to rule out 
construct-irrelevant features and confirm the alignment of items with desired student com-
petencies. The maximum possible score for the test was 42 points. Students scored 1 point 
for each correct answer whereas short and open-ended questions were scored based as 
accurate (2), partially accurate (1) or inaccurate (0). The performance-based item accounted 
for 15 points (Figure 3). Given that students had limited exposure to these ecosystem pro-
cesses, we expected that students would score points for demonstrating relationships but 
would otherwise struggle with identifying the processes. To measure the extent to which the 
items on the test were interrelated, we used Cronbach's alpha (Cronbach, 1951). Cronbach's 
alpha for the test was 0.70, an acceptable value indicating the equivalence of the items 
(Taber, 2018).

Using convenience sampling, video data was collected from 6 out of the 11 groups. 
Because the students were in a classroom environment and audio data was difficult to 

F I G U R E  3   Sample questions from the pre- and post-tests, the model-based question (Q8) and open-ended 
question (Q12)
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capture, groups were chosen based on the best video and audio quality that could be re-
corded. Audio data was transcribed and will be referred to as “verbal discourse data” to dis-
tinguish it from the in-game chat text (see the game log data). Written artifacts consisted of 
pen and paper worksheets that guided student inquiry and collaboration and group scientific 
models that explained why the problem is occurring.

Game log file data was collected from all groups who engaged in the game-based learn-
ing environment. There were 12 distinct types of actions captured, grouped into three forms 
of in-game actions (Table 2). In the investigation and brainstorming phases, we assume that 
the viewing and closing of notes meant that students have reviewed or ideally have read the 
information in their note. A total of over 40,000 individual actions were captured in the log 
files.

To understand student engagement during the problem-solving process, we tabulated 
game summary statistics from students' in-game log file data and identified two units of 
analysis, individual and group. For individual engagement, this included the (1) total time 
spent talking to in-game characters which included viewing and reading the information 
provided, (2) time spent viewing and reading tasks and (3) time spent viewing and reading 
notes when using the brainstorming board (Table 2). We assumed that reading was a largely 
individual activity although students did read notes aloud to one another.

Collaborative participation included group aggregates for (1) mean time spent on the 
board, (2) the mean votes for each note, (3) time on chat and (4) number of chat lines. Taken 
together, these indicators provided an overview of how much time each group spent talking 
about the ideas presented in the notes, justifying their actions at the board, and the extent 
to which the voting feature may have triggered these discussions (i.e., collaborative sense-
making). The mean number of votes on each note was an indication of how often students 
voted for the relevance of the notes to the specific idea. A higher count of votes meant stu-
dents likely discussed the note, which resulted in the changes in votes. On the other hand, a 
lower count might have meant that students came to agreement quicker.

Data analysis

To analyze the data, we used the following stats packages in R: ggplot2 (for visualization, 
Wickham, 2016), psych (for descriptive statistics, Revelle, 2021) and functions in the stats 
package: aov, princomp and kmeans (R Core Team, 2021). The bootstrapping was done 

TA B L E  2   Overview of in-game actions and associated phases

Phases In-game or trace data action

Investigation View and close list of notes

View and close task list

View notes by speaking to in game characters and objects

Brainstorming Close note after viewing detailed information

Share note

Delete note

Vote on note

Move notes to the appropriate column

In-game chat use in both phases Receive chat messages

Send chat messages

Close chat application after viewing
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manually, with random sampling with replacement from data and using princomp() on all 
bootstrapped samples. Results were then ordered and displayed as quartiles. Below, we 
specify these analyses in detail.

RQ1. To what extent did the PBL-informed game-based learning environment 
support content learning?

We hypothesize that students would learn the targeted content and that groups would en-
gage in the game-based learning environments differently. We conducted a mixed ANOVA, 
with time as a within-subject factor (pretest and post-test), and groups as a between-subject 
factor (ID: A to K). The assumptions of sphericity, homogeneity of variances and homogene-
ity of covariances were not violated. However, the normality assumption was violated for the 
pretest scores. Student assignment was quasi-random because of challenges with classroom 
management. Given that the mixed ANOVA model is robust to slight violations of the normality 
assumptions and the other assumptions were met, the test was conducted but we interpret the 
results with caution (Blanca et al., 2017; Kirk, 2013). The pre- and post-test scores were then 
used to understand group performances.

RQ2. How did individual and collaborative engagement in the problem-solving 
process differ between students?

To explore the relationship between individual and collaborative actions, the frequency of in-
dividual actions across different students were tabulated (Table 2). Because of the large quan-
tity of features and possible observations in the data, PCA was used to reduce the complexity 
of the large student log files and search for general patterns in student activity. PCA extracts the 
most vital characteristics from the data and compresses the information using principal com-
ponents, or linear combinations of the original variables (Abdi & Williams, 2010). The first prin-
cipal component accounts for the highest amount of variance in the data. The second principal 
component is orthogonal to the first principal component and must have the largest spread of 
data. Thus, PCA simplifies the data set, allows for an analysis of structures underlying student 
actions and for variables to load proportionally across multiple components. Because our data 
consist of actions that are highly correlated (i.e., reading a note, voting on a note), PCA was 
preferred over factor analysis because it is more robust to highly correlated variables (Joliffe & 
Morgan, 1992). PCA also selects components based on patterns inherent in the data, agnostic 
of theory. This approach controlled for biases that can be present in the feature-selection pro-
cess due to specialized domain knowledge (Wu et al., 2014). Although PCA with small sample 
sizes is feasible, it is sensitive to minor changes in the data. Thus, bootstrapping was utilized to 
ensure convergence to stable factor loadings (Babamoradi et al., 2013).

k-means clustering was then used to create distinct student groups based on the prin-
cipal components (see Jain, 2010 for brief history of the use of k-means across multiple 
disciplines). k-means was chosen because of the relative simplicity of the underlying 
algorithm, which makes it easy to understand and is applicable across a variety of data 
sets, even when data is nonparametric or difficult to interpret (Fix & Hodges, 1989). For 
this study, the silhouettes measure of cluster homogeneity was used as a measure of 
cluster quality (Rousseeuw, 1987). The silhouettes value refers to how similar an object 
is to its own cluster when compared to other clusters. A value of close to 1 means that 
that the objects are matched well to its associated clusters. In all cases, adding a cluster 
will increase the silhouette score. When selecting the number of clusters, we settled on 
four because (a) adding a fifth cluster did not increase the silhouette score by as much 
as adding a fourth, and (b) a five-cluster model did not appear to offer any additional sub-
stantive insight, but simply split an existing group into two (see Figure S1 in Supporting 
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Information comparing the models). After clustering, the clusters were compared across 
three types of activities: (1) individual learning phase actions, (2) collaborative actions 
during the brainstorming phase and (3) in-game chat actions. For the PCA, only the in-
game chat information is used, and the verbal discourse data is used to augment the PCA 
analysis, as we describe below.

The clustering analysis helped identify contrasting cases for interaction analysis (Jordan 
& Henderson, 1995). Interaction analysis is a qualitative method that focuses on how knowl-
edge construction can be observed in social activities (Hall & Stevens, 2016). As a method, 
it allows for repeated analysis of multiple streams of data, such as the audio-video data 
captured from 6 out of the 11 groups, written artifacts and log file data, to illuminate how 
students from the clusters engaged in the problem-solving process. This process includes 
viewing all available data, creating a content log or descriptions of what occurred in each 
group, and triangulating the information with data from the log files (i.e., game analytics). 
Because the PBL inquiry process defined specific phases of interaction, we examined group 
interaction by examining audio-video and in-game chat data, focusing on the temporal order 
of talk and how actions (discursive and log-file actions) contributed to collaborative inquiry. 
We thematized student actions when using the brainstorming board based on the collabo-
rative problem-solving and inquiry learning literature, (1) sharing and sorting notes by asso-
ciating them with the appropriate idea, (2) negotiating by voting on the relevance of notes to 
the ideas, (3) discussing the content of the notes, (4) negotiating relevance of the notes and 
(5) discussing and/or eliminating irrelevant ideas (Liu et al., 2016; Pedaste et al., 2015). In 
our discussion of the groups, each student was provided with a unique identifier (i.e., Eagle, 
Jeepney, Sun and Turtle) and a suffix that identified which team the student worked in. Thus, 
students in group A will be identified as Eagle-A and so on.

RESULTS

RQ1. To what extent did the PBL-informed game-based learning 
environment support content learning?

A mixed analysis of variance with groups as between-subjects and time as within-subjects 
factors revealed a main effect of time. Students scored significantly better in their post-tests, 
F (1, 37) = 13.36, p = 0.009 (pre-test mean = 13.6, SD = 3.92; post-test mean = 15.64, 
SD = 3.54), ηp

2 = 0.409. There was neither a significant main effect for groups (F (1, 10) = 
0.715, p = 0.703, ηp

2 = 0.203), nor an interaction among group and time (F (1.10) = 1.26, p = 
0.297, ηp

2 = 0.311). This suggests that engagement in the game-based learning environment 
supported groups in learning ecosystems content. Table 3 provides an overview of pre- and 
post-test scores and in-game collaborative actions for each group.

Based on Table 3, the overall average improvement was 2.2 points (difference between 
grand mean in the pre- and post-tests). If the improvement of the group was at least 2.2, 
these groups were in the above-average improvement band. The above-average improve-
ment band consisted of seven groups. If the groups had less than 2.2 improvements in their 
scores, but above the grand mean, they were categorized as the average improvement band 
(Groups D and H). Finally, if groups had no improvement, they fell into the no improvement 
band (Groups E and F). It is worth noting that students in Group F (no improvement band) 
scored higher than the mean in the pre-test and near the mean of the post-test, which may 
indicate that the students may have better content understanding to begin with. On the other 
hand, two students in Group I scored lower in their post-test, bringing the group average 
down. When comparing the groups in the above-average band to the groups in the average 
and no improvement bands together, groups in the above-average improvement band spent 
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more time at the board (about 8 minutes) and on chat (10 minutes more, 59 more chat lines), 
but less time during the investigation phase. However, groups in all bands spent about the 
same amount of time reading their notes and had similar voting patterns, while using the 
brainstorming board. The in-game summary statistics suggests that groups in the above-
average improvement band may be more deliberate in their discussions, as we will highlight 
later.

RQ2. How did individual and collaborative participation in the 
problem-solving process supported content learning outcomes?

Bootstrapping revealed that although there were differences in the magnitude of loadings 
across samples, the directionality and general magnitudes of loadings was preserved across 
samples. Table 4 includes quantiles for the bootstrapped PCA and loadings for the full data.

The PCA revealed that component 1, which we refer to as collaborative sense-making, 
accounts for a total 56% of the variance in the data. This component is a combination of 
receiving and sending chat messages, moving notes to the columns on the brainstorming 
board, and coincides with moving notes the notes to the board (Table 4). These actions 
suggest that this component is an indicator of collaborative interactions at the brainstorming 
board that may centred on sense-making. The negative loading on reading and the positive 
loading on sending and receiving chat messages also indicate that students do not have 
their notes open when they are chatting with their peers. This is likely because in the current 
design, students must view the detailed notes and then close them before using the chat 
app to talk to their peers. However, the smaller load on moving notes and the higher loads 
of sending and receiving messages indicate that students may be discussing the relevance 
of the notes to the ideas on the board.

The second component, which we have named self-directed actions accounts for a total 
of 17% of the variance is loaded across (1) actions at the board, which includes closing notes 
after viewing them (highest load), closing chat application after viewing, voting on notes, and 
moving notes, as well as (2) individual actions such as closing the list of notes while inves-
tigating, viewing chat messages, moving to locations and speaking to in-game characters. 
Because all loadings are positive, this component is most likely a combination of individual 
activity in the game-based learning environment. The loadings reveal that PBL provided a 
useful framework for how in-game actions can be meaningfully designed and interpreted 
to account for the contexts of learning and accounting for how individual students interact 
with different activities and tasks across time and with other students (Han et  al.,  2021; 
Zimmermann et al., 2007).

k-means clusters

Based on the first two principal components, a k-means cluster was performed to search 
for distinct student clusters. Figure 4 illustrates cluster membership by group and student 
improvement on the post-test.

When viewing student actions across principal components, there is a high level of ho-
mogeneity within groups despite the data being considered individually. This suggests that 
each group settles into a set of norms dependent on their group members. Based on the 
self-directed actions (SDA) and collaborative sense-making (CS) principal components, we 
identified four clusters, which are highly group-dependent (Figure 4). Students in Clusters 
1 and 2 had low to moderately SDA with (1) high and (2) moderate CS, whereas students in 
Cluster 3 had low SDA and low CS. Finally, Cluster 4 consisted of students with high SDA 



14  |      SALEH et al.

T
A

B
L

E
 4

 
Pr

in
ci

pl
e 

co
m

po
ne

nt
 a

na
ly

si
s 

lo
ad

in
gs

 a
nd

 in
te

rq
ua

rti
le

 ra
ng

es
 fr

om
 th

e 
bo

ot
st

ra
p 

an
al

ys
is

A
ct

io
ns

PC
1:

 c
ol

la
bo

ra
tiv

e 
se

ns
e-

m
ak

in
g

PC
2:

 s
el

f-
di

re
ct

ed
 a

ct
io

ns

Lo
ad

in
g 

ba
se

d 
on

 d
at

a
1s

t q
ua

rt
ile

 
bo

ot
st

ra
p

3r
d 

qu
ar

til
e 

bo
ot

st
ra

p
Lo

ad
in

g 
ba

se
d 

on
 d

at
a

1s
t q

ua
rt

ile
 

bo
ot

st
ra

p
3r

d 
qu

ar
til

e 
bo

ot
st

ra
p

M
ov

e 
no

te
s 

to
 id

ea
 c

ol
um

n
0.

17
0.

11
0.

20
0.

25
0.

13
0.

40
C

lo
se

 c
ha

t a
pp

lic
at

io
n

0.
06

0.
03

0.
11

0.
46

0.
33

0.
51

C
lo

se
 li

st
 o

f n
ot

es
0

0
0

0.
13

0.
11

0.
15

C
lo

se
 n

ot
es

 a
fte

r v
ie

w
in

g
−0

.11
−0

.1
6

−0
.0

5
0.

73
0.

56
0.

72
C

lo
se

 ta
sk

 li
st

−0
.0

2
0.

01
0.

02
0.

08
0.

05
0.

09

Sh
ar

e 
no

te
s

0
0

0.
02

0.
01

0.
01

0.
01

D
el

et
e 

id
ea

−0
.0

1
−0

.0
1

0
0.

01
0

0.
01

M
ov

e 
to

 lo
ca

tio
n

−0
.0

1
−0

.0
2

−0
.0

0
0.

12
0.

05
0.

16

R
ec

ei
ve

 c
ha

t m
es

sa
ge

0.
93

0.
90

0.
94

0.
09

0.
04

0.
15

Se
nd

 c
ha

t m
es

sa
ge

0.
29

0.
23

0.
31

0.
05

0.
03

0.
12

V
ie

w
 n

ot
es

 w
hi

le
 in

ve
st

ig
at

in
g

0.
04

0.
02

0.
07

0.
14

0.
07

0.
17

Vo
te

d 
on

 n
ot

es
−0

.0
5

−0
.0

7
−0

.0
3

0.
34

0.
27

0.
35

To
ta

l v
ar

ia
nc

e:
56

%
17

%

Lo
ad

in
gs

 o
ve

r |
0.

2|
 a

re
 b

ol
de

d.



       |  15COLLABORATIVE INQUIRY LEARNING ANALYTICS

and low CS. We expected groups in the above-average improvement band to have higher 
load of collaborative sense-making, and thus, were curious as to why students in groups 
in the above-average improvement band had lower collaborative sense-making (Figure 4).

Interaction analysis

To understand this and develop a more nuanced understanding of collaborative participa-
tion during the brainstorming session, we conducted qualitative interaction analysis (Jordan 
& Henderson, 1995). Interaction analysis involves evaluating all corpus of available data 
to understand how students interacted in their activities (Hall & Stevens, 2016). Out of the 
six groups that were selected for video capture, two groups were from the no improvement 
cluster (groups E & F), two groups were from the average improvement cluster (groups D 
& H), and the last two were from the above-average improvement cluster (Groups B & G). 
We first created descriptive logs of student interactions by integrating all available corpus 
for these six groups. After reviewing the data, we narrowed the analysis to four groups from 
each cluster: 

•	 Group B (above-average improvement, Cluster 1: low to moderate SDA, high CS),
•	 Group E (no improvement, Cluster 2: low to moderate SDA, moderate CS),
•	 Group G (above-average improvement, Cluster 3: low SDA, low CS) and
•	 Group H (average improvement, Cluster 4: high SDA, low CS).

Before discussing the interaction analysis, we briefly unpack the differences between 
Group H and groups with low to moderate SDA. Compared to the four groups that were cho-
sen for interaction analysis, Group H likely had higher SDA loadings because the students 

F I G U R E  4   Clusters by principal components. Letters indicate group assignment of individual students. 
Outlined shapes indicate student membership in the clusters whereas coloured areas indicate their membership 
in the above-average (large green area), average (medium blue area) and no improvement (thin red area) bands
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in the group averaged 17 votes on each note, spent 1.4 minutes on the notes. Groups E 
and G, respectively, spent 1.2 and 1.3 minutes on each note and averaged 9 and 11 votes 
for each note. On the other hand, the lower SDA loadings for students in Group B could be 
because one of the students in the group was absent for two days. Group B also averaged 5 
votes and spent only 0.6 minutes on each note. Furthermore, Group B had 985 lines of chat 
compared to Group E, G and H (524, 272 and 347 lines, respectively). The differences in the 
use of notes may indicate that the students in Group H (i.e., high SDA) were likely to work 
independently at the board by individually reading the notes.

Despite the apparent differences in SDA and CS loadings, qualitative interaction analysis 
of these four groups revealed that they engaged in verbal and text-based scientific discus-
sions as a group (see Supporting Information for transcripts and analysis of groups E and 
H). In all the groups, the facilitator provided prompts to help them with their collaborative 
sense-making. A key difference among the groups, however, is the extent to which the stu-
dents took on responsibility for their learning (Belland, 2011). This was characterized by two 
observations in group discourse, the initiation and presence of student-generated questions 
and nature of problem solving. Below, we present illustrative examples from Group B and G, 
as they engage in the second brainstorming board session. We chose Group B to contrast 
with Group G since both groups had similar above-average scores yet have differences in 
their collaborative sense-making (i.e., low vs. high).

Students in Group G scored above-average in their post-test and were in Cluster 3, with 
low SDA and low CS. However, similar to the groups that we qualitatively analyzed, these 
groups often engaged in verbal discussions (Table 5 and excerpts in Supporting Information). 
These conversations were also facilitator-led (see Group B for exception). The time spent 
on verbal discussions may explain why Group G spent only 78 minutes at the board and 
spent 95 minutes in chat. Based on the video analysis, the students sometimes closed their 
laptops and used their peers' screen to discuss ideas. In Group G and other groups, stu-
dents responded to facilitator prompts that focus on explanations, or knowledge integration 

TA B L E  5   Facilitator-led discussion in Group G with knowledge integration-type discourse

Speaker Verbal discussion

1 Facilitator-G Okay, so I know that there were questions last time about the space

2 Sun-G Why is that good, though?

3 Facilitator-G Okay, let's talk about it

4 Sun-G Because, like, if it's crowded, I don't like it

5 Facilitator-G Okay. But what does the note say? Did you open the note?

6 Sun-G One second …

7 Facilitator-G You can read it out loud. It's okay

8 Sun-G Alright, each of those [reads note] … tilapia can tolerate overcrowding. So 
they're the same as before

9 Facilitator-G Yeah! Whether they're crowded or not, they're the same. So, does that 
mean the space is important?

10 Sun-G Not really

11 Turtle-G It doesn't mean it's not relevant, or like …

12 Sun-G Because, like, they don't need space. They're the same with or without it

13 Eagle-G But still, it should go in space because they're talking about how they are 
healthy their way

14 Facilitator-G Alright, but is space even relevant to the fish?

15 Eagle-G No
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discourse (King, 1994). This discourse typically involved one student in dialogue with the 
facilitator, with other students observing and listening in (Table 5, lines 1–9). However, this 
initial discussion typically allows the students to then consider these concepts further and 
negotiate the meaning of these notes in relation to the problem (Table 5, lines 11–15). This 
suggests that facilitator questions play a large role in supporting learning. Comparatively, 
students in Group B often initiated sharing ideas and posing questions (Table 6). Recall that 
students in Group B scored above-average in their post-tests and was in Cluster 4, low to 
moderate SDA and high CS.

Discourse in Group B was typically student-led, with students generating questions 
that focus on knowledge integration during each of their brainstorming board session. 
Students in Group B were comfortable leading discussions with limited or no prompting from 
Facilitator B. The students also typically began discussions with descriptions of observable 
phenomenon (lines 1 and 3–4), “what” questions (lines 2 and 4, 15), which is indicative of 
comprehension-level discourse (King,  1994). Student discussion was also characterized 
by knowledge-integration or “why” questions that focused on making connections from the 
scientific concepts to the problem (lines 8–9), informed one another where the information 
could be found (line 14), and provided diverse perspectives and ideas about the topic of 
discussion (lines 10, 11, 13).

DISCUSSION

We explored the extent to which a PBL-informed game-based learning environment sup-
ported content learning and how individual and collaborative participation may differ. Results 
indicated that although students learned the content, groups that had higher improvement in 
their post-tests spent more time collaborating and may have adopted more responsibility for 
their learning by engaging in productive discourse (Belland, 2011). When factoring the differ-
ent ways of participating in the game, groups that appeared to be less collaborative based 
on their in-game actions typically engaged in more verbal discussions which may include 

TA B L E  6   Student-led discussion in Group B with comprehension and integration-type discourse

Speaker In-game chat

1 Jeepney-B Okay so the aerator produces oxygen for the Tilapia

2 Sun-B Sure the name is helpful but, is it that important?

3 Jeepney-B I think that has everything to do with this

4 Sun-B To the story I mean

5 Jeepney-B Because if it's not working, that is an issue. And we are trying to solve the issue

6 Sun-B Knowing the fishes names?

7 Turtle-B ?

8 Jeepney-B The aerator is the thing providing the Telapia with oxygen- i think

9 Jeepney-B Since the card mentions that now that it works

10 Sun-B Or is it a fish?

11 Turtle-B So like a oxygen filter

12 Jeepney-B That there are air bubbles providing dissolved oxygen

13 Turtle-B But the opposite

14 Jeepney-B Click on the card, Sun

15 Sun-B Grand wizard, is the Aerators a fish? (Reads note) ooh nvm

16 Jeepney-B It is not. Lol
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verbal support from their facilitators. Based on our findings, there are three key implications 
for the use of PBL in the design of collaborative inquiry and in interpreting learning analytics.

First, our study illustrates how leveraging PBL in a game-based learning environment 
can support student learning outcomes. Notably, because of the limited sample size, we 
are cautious in our claims and future work will need to determine what factors can predict 
learning gains. Regardless, it is challenging to implement PBL in the K-12 classroom be-
cause of the amount of instructional support that teachers need to provide (Glazewski & 
Hmelo-Silver, 2019). Students appeared to need additional support in collaborative sense-
making, especially in knowledge-integration and comprehension discourse. For our learning 
environment to be usable at scale (i.e., without facilitators), students must assume responsi-
bility for their learning. Fortunately, microscripts centred on comprehension and knowledge-
integration questions can be embedded in our chat tool to prompt student conversations 
(Kollar et al., 2018). Our study also highlights that students may not engage in desired self-
directed learning as they explore the learning environment. In our next iteration, we are im-
plementing an adaptive collaborative problem-solving system that supports comprehensive 
and knowledge-integration discourse and expanding the self-directed learning process to 
include individual sense-making supported by peer interactions.

Second, as an explanatory learning model, PBL provides interpretable and actionable 
results interpretation of learning analytics (Martinez-Maldonado et al., 2021). This may take 
the form of fully automating the real-time evaluation of collaborative analytics using PCA. 
The clustering of the PCA results indicate four distinct clusters, low to moderate SDA with 
(1) high and (2) moderate CS, (3) low SDA with low CS and (4) high SDA with low CS. These 
clusters can be used to diagnose the quality of individual and collaborative sense-making, 
which then allows teachers to support groups. Because verbal support appears be a factor 
in supporting student learning, groups that focus mainly on individual tasks or engaged in 
low collaborative sense-making may require support from the teacher. Such information can 
be actionable if provided to teachers in real-time, such as via an informative dashboard (van 
Leeuwen et al., 2019). Given that the group profiles are somewhat varied, they provide a 
more nuanced view of learning. This in turn does not privilege normative ideas of what good 
collaborative learning might look like (Rummel et al., 2016; Wise et al., 2021).

Finally, although PBL has often been used with multimedia (Liu et al., 2014; Su & Klein, 2010), 
these interactions are not centred on an online collaborative problem-space, which can be 
messy and challenging to analyze. In this study, we adopt a mixed method approach to better 
understand student interactions with tools and visualizations of their participation. We found 
that each analysis provided additional insights into aspects of collaborative inquiry. For ex-
ample, focusing on pre- and post-test results suggested that all students learned the content, 
but when factoring in student actions in the game-based learning environment, students ap-
proached the designed tasks differently. Our work therefore demonstrates how complimentary 
trace data analyses can be used to triangulate findings in a complex learning context.

CONCLUSION

The use of PBL as a pedagogical framework allowed us to focus on individual and col-
laborative actions in the game-based learning environment and provide insights into how to 
design an adaptive system to support collaborative inquiry. Drawing on the PBL inquiry cycle 
and interactions at the brainstorming board, we can design with the following parameters 
in mind: (1) provide scripts to promote desired actions related to content and collaborative 
outcomes, (2) alert teachers about extreme patterns in the data and (3) provide differential 
support for group negotiation. Depending on students' progress in their inquiry phases, the 
system could provide hints related to definitions (initial exploration) or higher-level inferences 



       |  19COLLABORATIVE INQUIRY LEARNING ANALYTICS

(later phases). Our work also suggests that a combination of methods is necessary to un-
derstand complex collaborative learning interactions. Given that game-based analytics of 
serious games has typically focused on pre- and post-test measures to understand learn-
ing gains (Alonso-Fernández, Cano, et al., 2019), our work contributes to the growing body 
of literature that aims to leverage learning analytics to understand learning outcomes and 
processes.

ACK N OW LE DG M E NT S
This research was supported by the National Science Foundation through grants DRL-
1561655 and DRL-1561486. Any opinions, findings, conclusions or recommendations ex-
pressed in this report are those of the authors, and do not necessarily represent the official 
views, opinions or policy of the National Science Foundation.

CO N FLI CT O F I NT E R EST
There is no potential conflict of interest in this work.

E TH I C S STAT E M E NT
This study was conducted with the IRB approval of Indiana University.

DATA AVA I L A B I L I T Y STAT E M E NT
Due to human subject protection policies, the study data are not open.

O RCI D
Asmalina Saleh   https://orcid.org/0000-0001-8178-4238 

R E FE R E N C E S
Abdi, H., & Williams, L. J. (2010). Principal component analysis. Wiley Interdisciplinary Reviews: Computational 

Statistics, 2, 433–459. https://doi.org/10.1002/wics.101
Alonso-Fernández, C., Calvo-Morata, A., Freire, M., Martínez-Ortiz, I., & Fernández-Manjón, B. (2019). 

Applications of data science to game learning analytics data: A systematic literature review. Computers & 
Education, 141, 103612. https://doi.org/10.1016/j.compe​du.2019.103612

Alonso-Fernández, C., Cano, A. R., Calvo-Morata, A., Freire, M., Martínez-Ortiz, I., & Fernández-Manjón, 
B. (2019). Lessons learned applying learning analytics to assess serious games. Computers in Human 
Behavior, 99, 301–309. https://doi.org/10.1016/j.chb.2019.05.036

Archer, E., & Prinsloo, P. (2020). Speaking the unspoken in learning analytics: Troubling the defaults. Assessment 
& Evaluation in Higher Education, 45(6), 888–900. https://doi.org/10.1080/02602​938.2019.1694863

Aronson, E. (2002). Building empathy, compassion, and achievement in the jigsaw classroom. In J. Aronson (Ed.), 
Improving academic achievement: Impact of psychological factors on education (pp. 209–225). Academic 
Press.

Babamoradi, H., van den Berg, F., & Rinnan, Å. (2013). Bootstrap based confidence limits in principal compo-
nent analysis—A case study. Chemometrics and Intelligent Laboratory Systems, 120, 97–105. https://doi.
org/10.1016/j.chemo​lab.2012.10.007

Barrows, H. S. (1983). Problem-based, self-directed learning. JAMA, 250(22), 3077–3080. https://doi.org/10.1001/
jama.1983.03340​22004​5031

Bell, T., Urhahne, D., Schanze, S., & Ploetzner, R. (2010). Collaborative inquiry learning: Models, tools, and chal-
lenges. International Journal of Science Education, 32(3), 349–377. https://doi.org/10.1080/09500​69080​
2582241

Belland, B. R. (2011). Distributed cognition as a lens to understand the effects of Scaffolds: The role of transfer of 
responsibility. Educational Psychology Review, 23(4), 577–600. https://doi.org/10.1007/s1064​8-011-9176-5

Blanca Mena, M. J., Alarcón Postigo, R., Arnau Gras, J., Bono Cabré, R., & Bendayan, R. (2017). Non-normal 
data: Is ANOVA still a valid option? Psicothema, 29(4), 552–557.

Bridges, S., Botelho, M., Green, J. L., & Chau, A. C. (2012). Multimodality in problem-based learning (PBL): An 
interactional ethnography. In S. Bridges, C. McGrath, & T. L. Whitehall (Eds.), Problem-based learning in 
clinical education (pp. 99–120). Springer. https://doi.org/10.1007/978-94-007-2515-7

https://orcid.org/0000-0001-8178-4238
https://orcid.org/0000-0001-8178-4238
https://doi.org/10.1002/wics.101
https://doi.org/10.1016/j.compedu.2019.103612
https://doi.org/10.1016/j.chb.2019.05.036
https://doi.org/10.1080/02602938.2019.1694863
https://doi.org/10.1016/j.chemolab.2012.10.007
https://doi.org/10.1016/j.chemolab.2012.10.007
https://doi.org/10.1001/jama.1983.03340220045031
https://doi.org/10.1001/jama.1983.03340220045031
https://doi.org/10.1080/09500690802582241
https://doi.org/10.1080/09500690802582241
https://doi.org/10.1007/s10648-011-9176-5
https://doi.org/10.1007/978-94-007-2515-7


20  |      SALEH et al.

Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16, 297–334. https://
doi.org/10.1007/BF023​10555

Dillenbourg, P. (1999). Collaborative learning: Cognitive and computational approaches. Advances in learning 
and instruction series. Elsevier Science, Inc.

Emerson, A., Cloude, E. B., Azevedo, R., & Lester, J. (2020). Multimodal learning analytics for game-based learn-
ing. British Journal of Educational Technology, 51(5), 1505–1526. https://doi.org/10.1111/bjet.12992

Fix, E., & Hodges, J. L. (1989). Discriminatory analysis. Nonparametric discrimination: Consistency properties. 
International Statistical Review, 57(3), 238–247.

Gašević, D., Dawson, S., Rogers, T., & Gasevic, D. (2016). Learning analytics should not promote one size fits all: 
The effects of instructional conditions in predicting academic success. The Internet and Higher Education, 
28, 68–84. https://doi.org/10.1016/j.iheduc.2015.10.002

Geden, M., Emerson, A., Carpenter, D., Rowe, J., Azevedo, R., & Lester, J. (2020). Predictive student modeling in 
game-based learning environments with word embedding representations of reflection. International Journal 
of Artificial Intelligence in Education, 31, 1–23.

Glazewski, K. D., & Hmelo-Silver, C. E. (2019). Scaffolding and supporting use of information for ambitious learning 
practices. Information and Learning Sciences, 120(1/2), 39–58. https://doi.org/10.1108/ILS-08-2018-0087

Hall, R., & Stevens, R. (2016). Interaction analysis approaches to knowledge in use. In A. A. diSessa, M. Levin, & 
N. J. S. Brown (Eds.), Knowledge and interaction (pp. 88–124). Routledge.

Han, A., Krieger, F., & Greiff, S. (2021). Collaboration analytics need more comprehensive models and methods: 
An opinion paper. Journal of Learning Analytics, 8(1), 13–29. https://doi.org/10.18608/​jla.2021.7288

Hmelo-Silver, C. E. (2004). Problem-based learning: What and how do students learn? Educational Psychology 
Review, 16(3), 235–266. https://doi.org/10.1023/B:EDPR.00000​34022.16470.f3

Hmelo-Silver, C. E. (2006). Design principles for scaffolding technology-based inquiry. In A. M. O'Donnell, C. 
E. Hmelo-Silver, & G. Erkens (Eds.), Collaborative learning, reasoning, and technology (pp. 147–170). 
Routledge.

Hmelo-Silver, C. E., & Eberbach, C. (2012). Learning theories and problem-based learning. In S. Bridges, C. 
McGrath, & T. L. Whitehill (Eds.), Problem-based learning in clinical education. Innovation and change in 
professional education (Vol. 8, pp. 3–17). Springer. https://doi.org/10.1007/978-94-007-2515-7_1

Hmelo-Silver, C. E., Jordan, R., Eberbach, C., & Sinha, S. (2017). Systems learning with a conceptual repre-
sentation: A quasi-experimental study. Instructional Science, 45(1), 53–72. https://doi.org/10.1007/s1125​
1-016-9392-y

Jain, A. K. (2010). Data clustering: 50 years beyond K-means. Pattern Recognition Letters, 31(8), 651–666. 
https://doi.org/10.1016/j.patrec.2009.09.011

Joliffe, I., & Morgan, B. (1992). Principal component analysis and exploratory factor analysis. Statistical Methods 
in Medical Research, 1(1), 69–95. https://doi.org/10.1177/09622​80292​00100105

Jonassen, D. (2011). Supporting problem solving in PBL. Interdisciplinary Journal of Problem-based Learning, 
5(2), 8. https://doi.org/10.7771/1541-5015.1256

Jonassen, D. H., & Hung, W. (2008). All problems are not equal: Implications for problem-based learning. 
Interdisciplinary Journal of Problem-based Learning, 2(2), 4. https://doi.org/10.7771/1541-5015.1080

Jordan, B., & Henderson, A. (1995). Interaction analysis: Foundations and practice. Journal of the Learning 
Sciences, 4(1), 39–103. https://doi.org/10.1207/s1532​7809j​ls0401_2

Jordan, R. C., Sorensen, A. E., & Hmelo-Silver, C. E. (2014). A conceptual representation to support ecological 
systems learning. Natural Sciences Education, 43(1), 141–146.

Kim, N. J., Belland, B. R., & Walker, A. E. (2018). Effectiveness of computer-based scaffolding in the context of 
problem-based learning for STEM education: Bayesian meta-analysis. Educational Psychology Review, 30, 
397–429. https://doi.org/10.1007/s1064​8-017-9419-1

King, A. (1994). Guiding knowledge construction in the classroom: Effects of teaching children how to question 
and how to explain. American Educational Research Journal, 31(2), 338–368. https://doi.org/10.3102/00028​
31203​1002338

Kirk, R. E. (2013). Experimental design. Procedures for the behavioral sciences (4th ed.). Sage.
Koedinger, K. R., Corbett, A. T., & Perfetti, C. (2012). The Knowledge-Learning-Instruction framework: Bridging 

the science-practice chasm to enhance robust student learning. Cognitive Science, 36(5), 757–798. https://
doi.org/10.1111/j.1551-6709.2012.01245.x

Kollar, I., Wecker, C., & Fischer, F. (2018). Scaffolding and scripting (computer-supported) collaborative learning. 
In F. Fischer, C. E. Hmelo-Silver, S. R. Goldman, & P. Reimann (Eds.), International handbook of the learning 
sciences (pp. 340–350). Routledge.

Liu, L., Hao, J., von Davier, A. A., Kyllonen, P., & Zapata-Rivera, J.-D. (2016). A tough nut to crack: Measuring 
collaborative problem solving. In Y. Rosen, S. Ferrara, & M. Mosharraf (Eds.), Handbook of research on 
technology tools for real-world skill development (pp. 344–359). IGI Global.

https://doi.org/10.1007/BF02310555
https://doi.org/10.1007/BF02310555
https://doi.org/10.1111/bjet.12992
https://doi.org/10.1016/j.iheduc.2015.10.002
https://doi.org/10.1108/ILS-08-2018-0087
https://doi.org/10.18608/jla.2021.7288
https://doi.org/10.1023/B:EDPR.0000034022.16470.f3
https://doi.org/10.1007/978-94-007-2515-7_1
https://doi.org/10.1007/s11251-016-9392-y
https://doi.org/10.1007/s11251-016-9392-y
https://doi.org/10.1016/j.patrec.2009.09.011
https://doi.org/10.1177/096228029200100105
https://doi.org/10.7771/1541-5015.1256
https://doi.org/10.7771/1541-5015.1080
https://doi.org/10.1207/s15327809jls0401_2
https://doi.org/10.1007/s10648-017-9419-1
https://doi.org/10.3102/00028312031002338
https://doi.org/10.3102/00028312031002338
https://doi.org/10.1111/j.1551-6709.2012.01245.x
https://doi.org/10.1111/j.1551-6709.2012.01245.x


       |  21COLLABORATIVE INQUIRY LEARNING ANALYTICS

Liu, M., Horton, L., Lee, J., Kang, J., Rosenblum, J., O’Hair, M., & Lu, C.-W. (2014). Creating a multimedia en-
hanced problem-based learning environment for middle school science: Voices from the developers. 
Interdisciplinary Journal of Problem-based Learning, 8(1), 4. https://doi.org/10.7771/1541-5015.1422

Liu, R., & Koedinger, K. R. (2017). Going beyond better data prediction to create explanatory models of educa-
tional data. In C. Lang, G. Siemens, A. Wise, & D. Gašević (Eds.), The Handbook of Learning Analytics (Vol. 
1, pp. 69–76). Society for Learning Analytics Research. https://doi.org/10.18608/​hla17

Mangaroska, K., & Giannakos, M. N. (2018). Learning analytics for learning design: A systematic literature review 
of analytics-driven design to enhance learning. IEEE Transactions on Learning Technologies, 12(4), 516–
534. https://doi.org/10.1109/TLT.2018.2868673

Martinez-Maldonado, R., Gašević, D., Echeverria, V., Fernandez Nieto, G., Swiecki, Z., & Buckingham Shum, S. 
(2021). What do you mean by collaboration analytics? A conceptual model. Journal of Learning Analytics, 
8(1), 126–153. https://doi.org/10.18608/​jla.2021.7227

O’Connor, C., & Michaels, S. (2019). Supporting teachers in taking up productive talk moves: The long road 
to professional learning at scale. International Journal of Educational Research, 97, 166–175. https://doi.
org/10.1016/j.ijer.2017.11.003

Pedaste, M., Mäeots, M., Siiman, L. A., de Jong, T., van Riesen, S. A. N., Kamp, E. T., Manoli, C. C., Zacharia, Z. 
C., & Tsourlidaki, E. (2015). Phases of inquiry-based learning: Definitions and the inquiry cycle. Educational 
Research Review, 14, 47–61. https://doi.org/10.1016/j.edurev.2015.02.003

R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical 
Computing. https://www.R-proje​ct.org/

Resnick, L. B., Asterhan, C. S. C. & Clarke, S. N. (2018). Accountable talk: Instructional dialogue that builds the 
mind. The International Academy of Education (IAE) and the International Bureau of Education (IBE) of the 
United Nations Educational, Scientific and Cultural Organization (UNESCO).

Revelle, W. (2021). psych: Procedures for psychological, psychometric, and personality research. Northwestern 
University.

Rosé, C. P., McLaughlin, E. A., Liu, R., & Koedinger, K. R. (2019). Explanatory learner models: Why machine 
learning (alone) is not the answer. British Journal of Educational Technology, 50(6), 2943–2958. https://doi.
org/10.1111/bjet.12858

Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal 
of Computational and Applied Mathematics, 20, 53–65. https://doi.org/10.1016/0377-0427(87)90125​-7

Rummel, N., Walker, E., & Aleven, V. (2016). Different futures of adaptive collaborative learning support. 
International Journal of Artificial Intelligence in Education, 26(2), 784–795. https://doi.org/10.1007/s4059​
3-016-0102-3

Saleh, A., Yuxin, C., Hmelo-Silver, C. E., Glazewski, K. D., Mott, B. W., & Lester, J. C. (2020). Coordinating 
scaffolds for collaborative inquiry in a game-based learning environment. Journal of Research in Science 
Teaching, 57(9), 1490–1518. https://doi.org/10.1002/tea.21656

Savery, J. R. (2019). Comparative pedagogical models of problem-based learning. In M. Moallem, W. Hung, & N. 
Dabbagh (Eds.), The Wiley handbook of problem-based learning (pp. 81–104). Wiley Blackwell.

Su, Y., & Klein, J. (2010). Using scaffolds in problem-based hypermedia. Journal of Educational Multimedia and 
Hypermedia, 19(3), 327–347.

Taber, K. S. (2018). The use of Cronbach's alpha when developing and reporting research instruments in science 
education. Research in Science Education, 48(6), 1273–1296. https://doi.org/10.1007/s1116​5-016-9602-2

Tawfik, A. A., & Kolodner, J. L. (2016). Systematizing scaffolding for problem-based learning: A view from 
case-based reasoning. Interdisciplinary Journal of Problem-based Learning, 10(1), 6. https://doi.
org/10.7771/1541-5015.1608

Van de Pol, J., Volman, M., & Beishuizen, J. (2010). Scaffolding in teacher–student interaction: A decade of re-
search. Educational Psychology Review, 22(3), 271–296. https://doi.org/10.1007/s1064​8-010-9127-6

van Leeuwen, A., Rummel, N., & van Gog, T. (2019). What information should CSCL teacher dashboards pro-
vide to help teachers interpret CSCL situations? International Journal of Computer-Supported Collaborative 
Learning, 14(3), 261–289. https://doi.org/10.1007/s1141​2-019-09299​-x

Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer-Verlag. https://ggplo​t2.tidyv​erse.org
Wijnia, L., Loyens, S. M., & Rikers, R. M. (2019). The problem-based learning process: An overview of different 

models. In M. Moallem, W. Hung, & N. Dabbagh (Eds.), The Wiley handbook of problem-based learning (pp. 
273–295). Wiley Blackwell.

Wise, A. F., Sarmiento, J. P., & Boothe, M. B., Jr. (2021). Subversive learning analytics. In LAK21: 11th International 
Learning Analytics and Knowledge Conference. https://doi.org/10.1145/34481​39.3448210

Wu, X., Zhu, X., Wu, G. Q., & Ding, W. (2014). Data mining with big data. IEEE Transactions on Knowledge and 
Data Engineering, 26(1), 97–107. https://doi.org/10.1109/TKDE.2013.109

Yoon, S. A., Goh, S.-E., & Park, M. (2018). Teaching and learning about complex systems in K–12 science edu-
cation: A review of empirical studies 1995–2015. Review of Educational Research, 88(2), 285–325. https://
doi.org/10.3102/00346​54317​746090

https://doi.org/10.7771/1541-5015.1422
https://doi.org/10.18608/hla17
https://doi.org/10.1109/TLT.2018.2868673
https://doi.org/10.18608/jla.2021.7227
https://doi.org/10.1016/j.ijer.2017.11.003
https://doi.org/10.1016/j.ijer.2017.11.003
https://doi.org/10.1016/j.edurev.2015.02.003
https://www.R-project.org/
https://doi.org/10.1111/bjet.12858
https://doi.org/10.1111/bjet.12858
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1007/s40593-016-0102-3
https://doi.org/10.1007/s40593-016-0102-3
https://doi.org/10.1002/tea.21656
https://doi.org/10.1007/s11165-016-9602-2
https://doi.org/10.7771/1541-5015.1608
https://doi.org/10.7771/1541-5015.1608
https://doi.org/10.1007/s10648-010-9127-6
https://doi.org/10.1007/s11412-019-09299-x
https://ggplot2.tidyverse.org
https://doi.org/10.1145/3448139.3448210
https://doi.org/10.1109/TKDE.2013.109
https://doi.org/10.3102/0034654317746090
https://doi.org/10.3102/0034654317746090


22  |      SALEH et al.

Zimmermann, A., Lorenz, A., & Oppermann, R. (2007). An operational definition of context. In B. Kokinov, D. C. 
Richardson, T. R. Roth-Berghofer, & L. Vieu (Eds.), Modeling and using context (pp. 558–571). Springer.

SU PPO RT I NG I N FO R M AT I O N
Additional supporting information may be found in the online version of the article at the 
publisher’s website.

How to cite this article: Saleh, A., Phillips, T. M., Hmelo-Silver, C. E., Glazewski,  
K. D., Mott, B. W., & Lester, J. C. (2022). A learning analytics approach towards 
understanding collaborative inquiry in a problem-based learning environment. British 
Journal of Educational Technology, 00, 1–22. https://doi.org/10.1111/bjet.13198

https://doi.org/10.1111/bjet.13198

