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Abstract
This study examined students’ genetics learning in a game-based environment by exploring the connections between the 
expectancy-value theory of achievement motivation and flow theory. A total of 394 secondary school students were recruited 
and learned genetics concepts through interacting with a game-based learning environment. We measured their science 
self-efficacy, science outcome-expectancy beliefs, flow experience, feelings of frustration, and conceptual understanding 
before and after playing the game, as well as their game satisfaction. Mixed-model ANOVA, correlation tests, and path 
analysis were run to answer our research questions. Based on the results, we found that the game had a significant impact 
on students’ conceptual understanding of genetics. We also found an acceptable statistical model of the integration between 
the two theories. Flow experience and in-game performance significantly impacted students’ posttest scores. Moreover, sci-
ence outcome-expectancy belief was found to be a significant predictor of students’ flow experiences. In contrast, science 
self-efficacy and pretest scores were found to be the most significant factors influencing the feeling of frustration during the 
game. The results have practical implications with regard to the positive role that an adaptive game-based genetics learning 
environment might play in the science classroom. Findings also underscore the role the teacher should play in establishing 
productive outcome expectations for students prior to and during gameplay.
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Introduction

Digital games are among the most popular and influential 
media used in science instruction across K-12 education 
(Riopel et  al. 2020). One reason for their popularity is 
that digital games can dynamically create rich, interactive 
learning experiences around abstract science concepts, 
such as those in molecular genetics, allowing students 
to better envision and grasp them (Cheng et  al. 2014). 
Digital games also allow students to perform authentic and 
complex science experiments repeatedly without concerns 
for any life consequences (Cheng and Annetta 2012). It 
follows that research has broadly argued that digital games 
are significant alternative tools for teaching and learning 
activities, particularly in science (Riopel et al. 2020). Hence, 
research suggested that digital games can improve not only 
students’ scientific conceptual understanding (Riopel et al. 
2020) but also their affective and motivational orientation 
toward science (Li and Tsai 2013; Vogel et al. 2006), as well 
as their scientific practices (Bressler and Bodzin 2016).
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Studies of high-school students by Gericke and Walberg 
(2013) showed that the perception of abstractness and 
image are among the difficulties that students encounter 
when learning complex, microscopic science topics such 
as genetics. Rotbain et al. (2008), who conducted a study 
on the use of computer animation in high-school genetics, 
suggested overcoming such difficulties by providing students 
with a visualization of genetics processes, such as translation 
of particular genes to an organism’s physical appearance. 
Using computer animation and interactive models to teach 
genetics concepts by increasing agency and providing a more 
dynamic simulation through digital games (e.g., Annetta 
et al. 2009; Marbach-Ad et al. 2008; Kim et al. 2015) has 
been shown promising findings. Contextualizing such 
genetics content and media elements within digital games 
have been demonstrated to significantly improve students’ 
genetics learning, particularly their understanding of protein 
synthesis, sexual reproduction, and inheritance (Wilson et 
al. 2018 ).

A recent meta-analysis study by Riopel et  al. (2020) 
involving 79 empirical studies on game-based science 
learning demonstrates that the use of digital games in science 
learning could significantly support gains in declarative and 
procedural knowledge and knowledge retention. The authors 
also found that the use of digital games was more effective 
in teaching certain science subjects, such as life science and 
physics, when implemented in shorter durations (e.g., less 
than a week, two sessions). One intriguing finding relevant to 
the present study concerns the influence of the level of user 
control over content on learning gains. Riopel et al. (2020) 
found that digital games that provided users with more control 
over content positively correlate to learning gains. With 
individualized control, students’ values and goals for learning 
can drive the navigation of their learning which, in turn, can 
lead them to more enjoyable learning experiences. Aligning 
students’ own valuation and purpose of learning with their 
feelings of enjoyment leads to immersion in the activities with 
greater intrinsic motivation, promoting a “flow experience” 
(Bressler and Bodzin 2016; Csikszentmihalyi 2014).

Flow experience is a well-studied aspect of game-based 
learning, which refers to students’ optimal experience when 
they are deeply engaged in an activity whose challenges are 
congruent with their skills (Sharek and Wiebe 2014). “Flow 
experience” was first coined by Csikszentmihalyi (1990) in 
the context of his flow theory. Flow theory also articulates 
how the feeling of frustration resulting from challenging tasks 
drives individuals to stay focused on the challenge. However, 
ongoing frustration may gradually disrupt focus attention 
if one keeps experiencing it throughout gameplay (Melhárt 
2018). Research has identified mixed findings around the rela-
tionship between feelings of frustration and learning gains in 
game-based environments—some found that the two have a 
negative relationship (e.g., DeFalco et al. 2018; Hone 2006) 

while others found that feelings of frustration do not relate to 
students’ learning (e.g., Baker et al. 2010; Shute et al. 2015).

Additionally, some studies have identified several factors 
that influence individuals’ flow and frustration in game-
based learning, such as self-efficacy and outcome expectancy 
beliefs. Studies show that self-efficacy and expectation 
play a significant role in influencing flow experience 
and frustration in digital game–based science learning, 
especially with regard to keeping individuals on task (Burak 
2014; Hung et al. 2015; Melhárt 2018). This implies that 
the expectancy-value theory of achievement motivation 
(Wigfield and Eccles, 2000) may also have a connection with 
flow theory and help explain student learning in a game-
based environment. However, the combination of these two 
theories to guide the study of learning outcomes in digital 
games seems to be a novel approach with regard to the 
current state of the educational research literature.

Thus, the current study sought to examine whether 
these two theories can be integrated into one explanatory 
statistical model with the goal of better understanding 
students’ genetics learning in a game-based environment. 
This proposed work would help identify the critical 
components of the connection between the two theories so 
that practitioners and researchers would be able to develop 
a more impactful learning intervention. The following 
research questions guided this current study:

1. Does a digital game–based learning environment 
increase students’ understanding of genetics concepts?

2. Is there any association between students’ game 
experiences with their learning gains?

3. Are there any correlations between in- and out-of-game 
factors?

4. How does the intercorrelation of the in- and out-of-game 
factors described by a path analysis explain students’ 
genetics learning in a game-based environment?

Theoretical Framework

Expectancy‑Value Theory of Achievement 
Motivation

The expectancy-value theory of achievement motivation 
(EVT) posits that “individuals’ choice, persistence, and 
performance can be explained by their beliefs about how 
well they will do on the activity and the extent to which 
they value the activity” (Wigfield and Eccles 2000, p. 68). 
In their later work, Eccles and Wigfield (2002) stated that 
an individual actively and regularly assesses the attainment 
of specific goals, as well as the cost-and-benefit values 
of such accomplishments. However, the present study 
focused less on the value component of EVT, and more 
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on the expectation of success: competence and outcome-
expectancy beliefs (Eccles and Wigfield 2002).

Competence belief or self-concept is usually used 
interchangeably with self-efficacy. Self-efficacy is beliefs 
about one’s ability to perform, execute, and complete a 
particular task (Pajares 1996). Bandura’s (1997) social-
cognitive theory similarly conceptualizes self-efficacy as is 
used in the EVT model; thus, EVT usually complements 
social-cognitive theory (Unfried et al. 2015). While both 
theories emphasize perceived confidence, Bong and Skaalvik 
(2003) and Pajares (1997) noted that Bandura’s self-efficacy 
is more activity-specific, while EVT’s self-efficacy is more 
general. We were more interested in EVT’s interpretation 
of self-efficacy in order to examine how students’ beliefs in 
their general science competence influence specific learning 
activities. Wigfield and Eccles (2000) conceptualized 
outcome-expectancy beliefs as learners’ beliefs about what 
they will do in nearly immediate or more-extended future 
events. Self-efficacy and outcome-expectancy beliefs share 
a similar feature, in that both depend on one’s current ability 
or competency.

Researchers have widely used EVT to examine students’ 
persistence in STEM careers (e.g., Guo et  al.  2017; 
Lauermann et al. 2017; Wiebe et al. 2018) and difficult 
STEM-related tasks (e.g., Abraham and Barker  2015). 
Similarly, studies have used self-efficacy to explain 
students’ learning in game-based environments (e.g., Eseryel 
et al. 2014; Su 2016). Less common has been the use of 
EVT—particularly the combination of self-efficacy and 
outcome expectancy beliefs—in an explanatory model of 
student learning in a game-based environment. We believed 
that these two components interact with flow experience to 
influence students’ learning in such learning environments.

Flow Theory

Csikszentmihalyi (1990) first coined the term “flow 
theory” to describe a phenomenon of optimal experience 
whereby individuals deeply engage in a fun and enjoyable 
task. Individuals are in a flow state when they encounter 
a challenging task and judge accomplishing the task as 
valuable. Csikszentmihalyi (1988, 2014) posited that in a 
flow state, people are intrinsically motivated, feel in control, 
maintain focused concentration, and do not monitor time. 
Nakamura and Csikszenmihalyi (2014) also explained that 
individuals seek to replicate flow experiences because they 
are intrinsically rewarding.

Additionally, Przybylski et  al. (2010) and  Sharek 
and Wiebe (2014) connected the idea of willingness to pursue 
obtainable challenges in a flow state to motivation, self-
efficacy, and engagement. According to these researchers, 
motivation to perform a particular task leads to engagement. 
Once an individual has engaged with the task, the  

opportunity arises to enter a flow state. One would maintain 
a flow state as long as the challenging task is relatively equal 
to the individual’s actual and perceived ability; otherwise, the 
individual would enter disengagement (O’Brien and Toms 
2008), feeling frustrated if the task is too difficult to perform 
(i.e., a frustration state). In contrast, if the task were too easy, 
the individual would enter a state of boredom. Therefore, in 
the context of the digital game–based environment, game 
developers need to consider how to maintain the optimal 
level of challenge so that the users can stay in the flow state.

Hypothesized Model

In the present study, we have hypothesized that the 
integration of the two theories—EVT and flow theory—
could help explain the psychological mechanisms underlying 
students’ genetics learning in a digital game–based 
environment. Below are the reviews on previous studies 
that we used to generate a hypothesized model presented 
in Fig. 1.

Science Self‑efficacy, Outcome‑Expectancy Belief, 
and Cognitive Score

According to EVT (Eccles and Wigfield 2002; Wigfield 
and Eccles 2000), students’ self-efficacy and outcome-
expectancy beliefs are positive predictors of achievement. 
In relation to science learning, Uçar and Sungur (2017) 
explored seventh-grade students’ science self-efficacy and 
their science achievement and found that higher self-efficacy 
contributed to a higher chance of students succeeding in 
science class. Su’s (2016) work in a game-based learning 
environment showed that motivation positively influences 
cognitive performance. Moreover, using a structural equation 
modeling (SEM) technique to understand the relationship 
between cognitive scores before, during, and after learning 
in a game-based environment, Shute et al. (2015) showed 
that these three scores were significantly predictive of one 
another. Based on these studies, we predicted that both 
science self-efficacy and outcome expectancy would have 
a positive impact on students’ cognitive outcomes, either 
before, during, or after the gameplay. Finally, the earlier 
cited literature on game-based science learning (e.g., Cheng 
et al. 2015; Riopel et al. 2020) predicts that gameplay will 
have a positive impact on learning outcomes. The followings 
are more detailed hypotheses:

H1. Science self-efficacy has a positive impact on the 
genetics pretest score.

H2. Science outcome-expectancy belief has a positive 
impact on the genetics posttest score.

H3. Genetics pretest score is positively predictive of the 
posttest score.
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H4. Genetics pretest score has a positive impact on in-
game performance.

H5. In-game performance has a positive impact on the 
genetics posttest score.

Flow and Prior Knowledge

Csikszentmihalyi (1990, 2014) posited that flow and 
frustration states depend on the relationship of one’s related 
knowledge and skills, and the task at hand. This implies 
that a student’s level of germane knowledge before playing 
the game has a relation to their being in flow or frustration 
states. Shute et  al. (2015) demonstrated that incoming 
prior knowledge (pretest) has a significant positive impact 
on flow experience but was not significant for the feeling 
of frustration. Shute et al. finding on frustration conflicts 
with flow theory, especially in relation to the feeling of 
frustration that should be correlated to prior knowledge. In 
the present study, we investigated flow theory’s prediction 
that higher prior knowledge should negatively influence 
feelings of frustration. Thus, we hypothesized the following 
relationships between prior knowledge and components of 
flow theory:

H6. Genetics pretest score has a positive relationship with 
flow experience.

H7. Genetics pretest score has a negative relationship with 
the feeling of frustration.

Bressler and Bodzin (2016) looked at the impact of the 
game-based environment on eighth-grade students’ flow 
experience and scientific practices. They found that both 
students’ self-reported flow experience, and their scientific 
practice scores improve after playing the game, suggesting 
a positive relationship between these two constructs. Baker 
et al. (2010) examined several users’ cognitive-affective 
states while playing educational games and found that 
feeling frustrated produces less-than-optimal learning. 
Guided by these and other studies (e.g., Erhel and Jamet, 
2019), we developed the following hypotheses to test to 
what extent flow experience and feeling of frustration during 
gameplay influence students’ posttest scores:

H8. Flow experience has a positive impact on the genetics 
posttest score.

H9. The feeling of frustration has a negative impact on the 
genetics posttest score.

Self‑efficacy, Outcome‑Expectancy Belief, and Flow

Przybylski et al. (2010) and Sharek and Wiebe (2014) posited 
that one’s willingness and motivation to pursue obtainable 
goals and overcome challenges relate to flow experience and 
feelings of frustration. Hung et al. (2015) examined students’ 
science learning in tablet-PC-game–based environment and 
found that science self-efficacy positively correlates to flow 
experience and learning. This may connect to one of the 
ideas relating to cognitive load theory-germane cognitive 
load. Paas and van Merriënboer (1994) and Mayer and 

Fig. 1  Hypothesized model integrating EVT and flow theory. (+) positive impact; (−) negative impact
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Moreno (2010) defined “germane cognitive load” as the 
cognitive effort an individual commits to learning goals. 
They added that the more motivated one is, the greater the 
cognitive processing effort involved. On the contrary, one in 
a frustration state would not devote effort to germane load, 
suggesting that motivation negatively correlates to the feeling 
of frustration. Based on these empirical and theoretical 
foundations, we proposed the following hypotheses:

H10. Science self-efficacy has a positive impact on the 
flow experience.

H11. Science outcome-expectancy belief has a positive 
impact on flow experience.

H12. Science self-efficacy correlates negatively to the feel-
ing of frustration.

H13. Science outcome-expectancy belief correlates nega-
tively to the feeling of frustration.

Flow, In‑Game Performance and Game Satisfaction

Wiebe and colleagues (2014) showed that f low 
experience positively correlated to game satisfaction. 
They also found that feelings of frustration negatively 
predicted game satisfaction. Applying these findings 
with the prior literature on the flow and performance, 
Hwang et al. (2015) and Sailer et al. (2017) demonstrated 
that students’ performance during the gameplay 
positively impacts their game satisfaction. In contrast, 
Hanus and Fox (2015) conducted a longitudinal study on 
the effect of gamification in the classroom. They found 
that students’ game satisfaction did not significantly 
correlate with and predict their final performance. These 
conflicting findings may have arisen because their study 
was situated in a more authentic learning context than 
other previous studies that were mostly done over shorter 
time spans or lab settings. Hence, these contrasting 
findings warrant further examination:

H14. Flow experience has a positive impact on game 
satisfaction.

H15. The feeling of frustration has a negative impact on 
game satisfaction.

H16. Performance in the game correlates to students’ 
game satisfaction.

H17. Game satisfaction does not have an impact on stu-
dents’ genetics posttest score.

Method

Research Design and Samples

The current study used a quasi-experimental, one-group 
pretest-posttest design and quantitative methods. We 
adopted this design because our prior work indicated that 
this digital game intervention would have a significant impact 
on students’ learning. We then proceeded with a prediction 
study using path analysis where we tested our hypothesized 
model (Fig. 1).

A total of 394 secondary school students participated 
in this study. They were from seven high schools and one 
middle school located along the eastern seaboard of the 
USA. Only participants with complete in- and out-of-game 
data were retained for further analysis, resulting in 307 
participants in the analysis. This sample size is greater than 
the minimum sample size of 300 suggested by Hair et al. 
(2019) for structural equation modeling (SEM).

The final dataset consisted of students in the seventh 
and ninth through twelfth grades. Most participants were in 
the ninth (24%) or tenth (55%) grade. Of the total sample, 
47% identified as female, 46% identified as male, and the 
remaining 7% preferred not to indicate their gender. The 
participants varied in terms of ethnicity. Of those who 
reported their ethnicity, 51% were White, 12% were African-
American, 10% were multiracial, 7% were Latinx, and 4% 
were Asian. The remaining 16% identified as “Other” or did 
not provide information about their ethnicity. Most (88%) 
of the participants were non-English Language Learners 
(ELLs) while 12% were ELLs.

Fig. 2  Screenshots from 
Geniventure
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The Game: Geniventure

This study involved a game-based learning environment 
called Geniventure in which students learned genetics 
concepts as they completed challenges centered on breeding 
dragons (aka “drakes”) as part of a greater story narrative. 
The game was a self-paced game, and thus the length of 
time students took to play the game was varied (on average 
ranging from five to eight 90-min class periods). In the 
game, students completed missions consisting of individual 
challenges, such as manipulating alleles to match a drake’s 
genotype to a target phenotype (Fig.  2 on the left) or 
choosing the correct phenotype or physical characteristic 
for a given allele pairing. Figure 2 shows the screenshots 
from the game.

Students were awarded crystals for correct submissions. 
The number of actions, or “moves,” that students took to 
complete a mission was used to determine the color of the 
crystal that they received for that mission—blue, yellow, 
red, or no crystal, indicating perfect to imperfect solutions, 
respectively. The number of moves taken or crystals 
received was also used as a proxy to determine students’ 
understanding of the genetics concepts tested in a particular 
mission.

The game had an adaptive support system that delivered 
hints to students and tracked students’ performances 
throughout the game. The architecture of this adaptive 
support system was informed by the Bayes net model, 
used in other adaptive support systems (cf., Shute 2011). 
The system generated a score for each genetics concept in 
the game, referred to as “probability learned.” When this 
probability learned score was below a certain threshold, 
students were given hints to help them complete the mission, 
including three levels of text-based hints along with visual 
cues to help them navigate to the specific area on the screen 
where they made an error.

Research Instrument and Data Collection

Six instruments were used in this study: science self-
efficacy and outcome-expectancy belief questionnaires; flow 
experience and feeling of frustration questionnaires; in-game 
learning probability; a game satisfaction questionnaire; game 
experience questionnaire; and an assessment measuring 
students’ genetics understanding.

Science Self‑efficacy and Outcome Expectancy

We used the science dimension of the STEM attitudes survey 
developed by Unfried et al. (2015) to measure students’ 
science self-efficacy and outcome expectancy beliefs. These 
questionnaires were administered before students took their 
pre-assessment test and consisted of four and five items, 

respectively, on a Likert scale ranging from 1 (strongly 
disagree) to 5 (strongly agree). The items and psychometric 
properties are presented in Appendix 1. The Rasch analysis 
indicated that the instrument was valid and reliable (Boone 
et  al. 2014;  Wright and Linacre 1994). Satisfactory 
Cronbach’s alpha values of 0.731 and 0.914 based on 
(DeVellis 2017) were obtained for the science self-efficacy 
and outcome-expectancy belief constructs, respectively.

Flow Experience and Feelings of Frustration

These two constructs were measured with two items on a 
Likert scale ranging from 1 (strongly disagree) to 5 (strongly 
agree). The item used to measure flow experience was “The 
time I spent using [The Game] just slipped away,” and the 
item used to measure feelings of frustration was “I felt 
frustrated while using [The Game].” These two items were 
adopted from the User Engagement Scale (UES; O’Brien 
and Toms 2010; Wiebe et al. 2014). These two items were 
embedded in the exit ticket, a form of formative assessment 
that students took after playing [The Game] each class 
period. On average, students completed the game across five 
to eight different class periods and therefore had five to eight 
answers for each item. We used these answers to compute 
students’ scores of these two variables and reliability 
values. The reliability value was 0.769 for flow experience 
and 0.609 for feelings of frustration, indicating satisfactory 
and acceptable values for research purposes, respectively 
(DeVellis 2017).

In‑Game Performance/Learning Probability

An evidence-centered design (ECD, see Mislevy et  al. 
2012) framework for assessing student knowledge was 
used to analyze trace data of students’ behaviors against 
an inventory of genetics concepts. Trace data produced by 
the adaptive support system were used to generate students’ 
in-game performance scores. These scores were aggregated 
from scores on seven learning objectives that include 13 
genetics concepts (see Appendix 2) assessed throughout the 
gameplay. Students’ in-game performance scores ranged 
from 0 (no understanding) to 1 (perfect understanding) of 
the genetics concepts covered during the gameplay.

Game Satisfaction

Game satisfaction was also measured using the satisfaction 
subscale of the UES questionnaire (O’Brien and Toms 
2010; Wiebe et al. 2014). The game satisfaction scale was 
administered post-gameplay. The scale consisted of seven 
five-point Likert-type items ranging from 1 (strongly 
disagree) to 5 (strongly agree). The items and psychometric 
properties are presented in Appendix 1. The Cronbach’s 
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alpha value for this scale was 0.841, indicating a reliable 
scale (DeVellis 2017).

Assessment Measuring Students’ Genetics Understanding

Students’ genetics understandings were assessed with a total 
of 25 multiple-choice questions developed by our research 
team. The same ECD process used to guide the adaptive 
support system development was also used to develop 
these items. The items then went through two rounds of 
revisions of earlier implementations of the game. These 
items tested students’ understanding of genetics concepts 
that had been presented in the game and aligned with the 
learning objectives and genetics concepts listed on Appendix 
2. The psychometric properties of this assessment are 
provided in Appendix 1. Rasch analysis indicated that the 
instrument was valid and reliable (see Boone et al. 2014). 
The Cronbach’s alpha values for the pretest and posttest were 
0.853 and 0.893, respectively.

Students’ Affective Valence

To investigate students’ affective valence in response to 
gameplay, we asked students to describe their experience 
after they played the game each class period. A single open-
ended question was asked as part of the exit ticket: “Is there 
anything else you want to tell us about your experience with 
[The Game] today?” We used the data obtained from this 
question to answer our second research question (RQ2). 
Students’ answers were coded based on a modified version of 
Russel’s Core Affect Framework (Baker et al. 2010; Russell 
2003). We grouped these Russel’s Core Affect Framework 
categories into three categories: displeasure (coded with − 1), 
neutral (coded with 0), and pleasure (coded with 1). Examples 
of student quotes for each category are provided in Appendix 
3. Students’ responses were coded by the first author and a 
science education doctoral student. The inter-rater reliability 
was k = 0.873 and for each category was greater than 0.810 
indicating satisfactory agreement (Cohen 1960).

Data Analysis

Rasch analysis was performed on the data for science 
self-efficacy, science outcome-expectancy beliefs, game 
satisfaction, and genetics assessment. Scores computed by 
Rasch analysis used the same unit of measurement, called 
logit, allowing the scores to be directly compared. For ease 
of interpretation, we also converted students’ scores for some 
variables (science self-efficacy, science outcome-expectancy 
beliefs, game satisfaction, and genetics assessment) to the 
scale 0–100. We then ran descriptive statistics, including 
skewness and kurtosis, on these converted data to ensure that 
they were normally distributed. George and Mallery (2010) 
suggested that normally distributed data have skewness and 
kurtosis values between − 2 and 2. Next, we ran a mixed-
model ANOVA to answer RQ1. We set the students’ grade 
level in school as the covariate, given Riopel et al.’s (2020) 
finding that grade level moderated the impact of game-based 
environments on students’ science achievement. We first ran 
the full model; when we did not find a significant interaction 
effect between gain score and grade, we removed the 
covariate from the model to obtain the main effect. Partial 
eta squared (ηp

2) was used to measure effect size, and 0.01, 
0.06, and 0.16 designated small, medium, and large effect 
sizes, respectively (Cohen 1988).

Students’ normalized gain scores (Hake 1998) were 
generated to answer RQ2. Students were divided into 
three groups using median-split technique based on their 
normalized gain scores—low, medium, and high gain scores. 
We then ran a chi-square test of independence to examine 
the association between students’ game experiences, 
as determined by cognitive-affective states, and their 
learning gains. Next, we performed bivariate Pearson’s and 
Spearman’s rank correlation tests to answer RQ3. Finally, 
the hypothesized model in Fig. 1 was tested using SEM path 
analysis. The model was evaluated using the cutoff values 
suggested by Schreiber et al. (2006): χ2/df < 3, TLI > 0.90, 
CFI > 0.95, RMSEA < 0.06, and SRMR < 0.05. We then 
removed non-significant paths and reran the analysis, then 

Table 1  Descriptive statistics

*Raw mean

Variable Mean (logit) SD Skewness Kurtosis

Science self-efficacy 52.11 15.70 0.56 0.94
Science outcome-expectancy 52.65 21.56 0.16 0.38
Pretest score 51.73 14.87 0.99 1.16
Posttest score 64.32 16.94 0.16 − 0.52
In-game performance* (range 0–1) 0.86 0.13 − 1.96 4.87
Flow experience* (range 1–5) 3.08 0.81 − 0.03 0.01
Feeling of frustration* (range 1–5) 2.89 0.82 − 0.28 0.25
Game-satisfaction 62.17 16.19 − 0.50 4.16
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compared the hypothesized full model to the model with 
non-significant paths removed.

Rasch analysis was performed using WINSTEPS version 
4.0.1 (Linacre 2017). SEM was performed in IBM Amos 
version 25.0 (Arbuckle 2017), with the remaining statistical 
analyses run using SPSS version 26.0 (IBM Corp. 2019).

Findings

Descriptive Statistics

Descriptive statistics for each variable are presented 
in Table  1. Regarding normality, for path analysis, the 
assumption of normality is made only for the dependent 
variable (Hair et al. 2019)—for this analysis, the posttest 
score. The non-normal independent variables are thus 
considered acceptable.

Pretest and Posttest Difference (RQ1)

We used mixed-model ANOVA to answer our first 
research question (RQ1) regarding the difference between 
students’ conceptual understandings before and after 
the intervention. Two models were run: the full model 
with the covariate (Model 1) and a model without the 
covariate (Model 2). Based on the results, for Model 1, 

we found that grade level did not significantly impact 
the association between pretest and posttest score (F[1, 
298] = 0.76; p = .384; ηp

2 = 0.003), indicating that students’ 
grade level did not have a significant influence on their 
genetics learning in the game-based environment. We 
then removed grade level variable from the model to test 
the main effect and found a significant increase between 
pretest (M = 51.73; SD = 14.87) and posttest (M = 64.32; 
SD = 16.94) scores with a very large effect size (F[1, 
306] = 165.59; p < .001; ηp

2 = 0.351). Table 2 shows all 
ANCOVA results.

Association Between Students’ Affective Valence/
Experience and Learning Gains (RQ2)

A Pearson chi-square test of independence was run to 
answer the second research question (RQ2) addressing 
the association between students’ learning gains and game 
experiences as determined by their cognitive-affective 
state. In the lower scores group, 49% of students reported 
neutral experiences or feelings during and toward the 
game, 32% displeasure, and 19% pleasure. Similarly, in 
the medium scores group, roughly half of the students 
(53%) reported neutral experiences and feelings, 27% 
displeasure, and 19% pleasure. In the higher scores group, 
56% of students voiced neutral experiences and feelings, 
23% displeasure, and 21% pleasure. The chi-square test 
of independence found no significant association between 
students’ learning gains and their game experiences 
(Pearson χ2 = 3.22; p = .522).

Correlations Between Variables (RQ3)

Bivariate Pearson’s and Spearman’s rank correlation 
tests were run to answer RQ3, which resulted in both 
significant (p < .05) and non-significant correlations 

Table 2  Results from repeated-measures ANCOVA

*Covariate, Model 1 full model, Model 2 without covariate

Model Variable F df p ηp
2

Model 1 Pre-post difference 5.19 [1, 298] .023 0.017
Grade* 0.76 .384 0.003

Model 2 Pre-post difference 165.59 [1, 306] < .001 0.351

Table 3  Correlation coefficients 
(r) computed from Pearson’s 
and Spearman’s rank correlation 
tests

*p < 0.05; **p < 0.01; no asterisk p > 0.05
a Spearman’s rank correlation test

Variable Variable

(b) (c) (d) (e) (f) (g) (h)

Science self-efficacy (a) 0.494** 0.274** 0.231** 0.105 0.001 − 0.108 0.158**

Science outcome-
expectancy belief

(b) – 0.304** 0.196** 0.005 0.111 − 0.090 0.193**

Pretest score (c) – 0.444** 0.238** 0.050 0.108 0.041
Posttest score (d) – 0.407** 0.140** 0.010 0.065
In-game  performancea (e) – 0.068 0.017 0.038
Flow experience (f) – 0.004 0.245
Feeling of frustration (g) – − 0.228**
Game  satisfactiona (h) –
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(p > .05). The most significant correlations were between 
science self-efficacy and outcome-expectancy belief 
(r = .494), pretest and posttest scores (r = .444), and 
in-game performance and posttest score (r = .407). We 
also found a weak but significant correlation between 
posttest score and f low experience (r = .140). Flow 
experience was found to be weakly correlated with 
science outcome-expectancy belief (r = .111), but this 
correlation was not significant (p = .057). Feelings of 
frustration were negatively and significantly correlated 
with game satisfaction (r = − .228). The complete results 
of the correlation tests are presented in Table 3.

Path Analysis (RQ4)

A path analysis was run to answer our fourth research 
question (RQ4). We tested our hypothesized model and 
the revised model (i.e., the model with non-significant 
paths removed). Removing non-significant paths improved 
the quality of the model according to the fit indices 
(χ2/df = 1.877, p = .043, CFI = 0.969, TLI = 0.890, and 
RMSEA = 0.054, for the hypothesized model, as compared 
with χ2/df = 1.508, p = .093, CFI = 0.973, TLI = 0.936, and 
RMSEA = 0.041 for the revised model). The improved fit 
indices, in particular the χ2/df value, of the revised model 

Fig. 3  An example item used to 
measure students’ understand-
ing of genetics

Fig. 4  Final model with standardized β values. **p < .01; *p < .05; no asterisk p > .05
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indicated that the data fit the revised model better than the 
hypothesized model. The revised model with standardized 
path coefficients is visualized in Figs. 3 and 4. Each path 
(arrow) represents the change in Y associated with an 
increase in X of one standard deviation. For example, given 
a change of one standard deviation in science outcome-
expectancy belief, pretest score improved by 0.22 standard 
deviations.

As shown in Fig.  4, there were two different final 
dependent variables—game satisfaction and posttest 
score—given that there was no significant path from game 
satisfaction to posttest score. This confirmed the findings 
above, which did not identify any significant association 
between learning gains and students’ game experience. 
Moreover, all direct and indirect impacts from science 
outcome-expectancy belief and self-efficacy to posttest score 
were significant (p < .05) when they did not involve feelings 
of frustration. As hypothesized, pretest score, in-game 
performance, and flow experience were significantly 
predictive of posttest score. All possible indirect effects are 
presented in Table 4.

Discussion

In this study, we sought to examine the mechanism of 
students’ genetics learning in a game-based environment 
by focusing on integrating the expectancy-value theory of 
achievement motivation (Wigfield and Eccles 2000) and 
flow theory (Csikszentmihalyi 1990). We found that the 
game used in this study had a significant impact on students’ 
genetics learning as demonstrated by the significant 
increase in students’ assessment scores, with a very large 
effect size. Interestingly, this result is quite different from 
previous empirical studies and meta-analyses of game-based 
learning in secondary education, which typically yielded 
non-significant to small effect sizes (e.g., Shute et al. 2015; 
Wouters et al. 2013). Critically, many previous studies did 
not use adaptive technologies in their games. It is possible 

that the real-time feedback and scaffolding via hints and the 
adaptive remediation provided by our game had a significant 
impact on learning outcomes.

It is also of note that grade level did not have a significant 
impact on changes in pretest and posttest scores. Several 
previous meta-analyses (e.g., Riopel et al. 2020; Wouters 
et al. 2013) found that grade level had a significant impact 
on students’ learning in game-based environments. The 
alternative categorizations used in previous studies may 
explain this difference in findings. For instance, Riopel 
et al. (2020) categorized students of different grade levels 
into three groups representing various levels of education 
(primary, secondary, and college), while we used students’ 
actual grade levels (seventh, ninth, etc.) and which 
constituted a relatively narrow age range. Nevertheless, 
our results support Riopel et al. (2020) categorization, in 
which none of the grade levels within the secondary level 
had a significant impact on students’ learning and could thus 
be grouped into one category. Furthermore, this supports 
the design of the current study, especially in generating 
the statistical model of secondary-level students’ genetics 
learning in game-based environments.

The results of SEM path analysis showed that 10 of 17 
hypotheses were confirmed. These included the relationships 
between science outcome-expectancy belief, flow experience, 
and posttest score. As predicted, we found that science 
outcome-expectancy belief positively predicted flow experience 
during gameplay and led to an increase in posttest score. 
According to Csikszentmihalyi (2014), an individual needs to 
have a very clear goal and expectation in order to enter a flow 
state. Here, students’ science expectations may have served 
that purpose, encouraging students to persist in the game and 
enter a flow state. One possible reason for the minimal nature 
of this impact is that the expectation measured in this study is 
not specific enough (i.e., science rather than genetics learning). 
Future research might examine the relationship between more 
specific outcome expectations (e.g., an expectation of genetics 
learning, rather than a broader science outcome expectation) 
and flow experience during gameplay.

Table 4  Indirect effects Indirect effect Standardized β 
estimate

p value

Science expectancy beliefs → Flow experience → Posttest score 0.012 0.033
Science expectancy beliefs→   Pretest score → Posttest score 0.081 0.001
Science self-efficacy → Pretest score → Posttest score 0.060 0.011
Pretest Score → In-game performance→  Posttest score 0.075 0.001
Science self-efficacy  → Feeling of frustration → Game-satisfaction 0.036 0.002
Science expectancy beliefs → Flow experience → Game-satisfaction 0.030 0.025
Pretest score → Feeling of frustration → Game-satisfaction − 0.036 0.001
Flow experience → Game-satisfaction → Posttest score 0.003 0.735
Feeling of frustration → Game-satisfaction → Posttest score − 0.003 0.728
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The significant impact of flow experience on posttest 
score was as expected. Csikszentmihalyi (2014) indicated 
that when individuals are in a flow state, they usually know 
what they are doing as a result of receiving feedback from 
the activity and are therefore aware of their current state of 
understanding (here, genetics understanding). The regular 
feedback that students received during the game most likely 
set their baseline conceptual understanding of genetics and 
thus improved their performance. This may also explain 
why no significant path was found from pretest score to flow 
experience: regardless of what students knew before playing 
the game, the adaptive scaffolding they received during 
gameplay might have served as a new baseline of genetics 
understanding upon which they relied for improvement. 
Accordingly, prior knowledge may not play an important 
role in facilitating a flow state, at least in the context of this 
study.

We found other interesting results, especially the direct 
impact of science self-efficacy and pretest scores on students’ 
feelings of frustration. Science self-efficacy had a significant 
negative relationship to feelings of frustration—that is, the lower 
students’ science self-efficacy, the more feelings of frustration 
they experienced during the game. This may partially connect 
to a concept in flow theory regarding the alignment between 
individuals’ perceived abilities and challenges in a game 
(Csikszentmihalyi 2014; Sharek and Wiebe 2015). In this study, 
it is possible that students were initially confident in their science 
abilities but realized during gameplay that their perceptions of 
their science skills did not align with the challenges presented 
in the game. If the challenges were too difficult than what 
students had expected, students thus experienced more 
frustration. In contrast, a positive impact of pretest score on 
feelings of frustration was identified, meaning that the higher 
students’ pretest scores, the greater the feelings of frustration 
they experienced during gameplay. This result differs from 
both our hypothesis and Shute et al. (2015) study, which found 
a negative, non-significant impact of pretest score on feelings 
of frustration during gameplay. This finding may be explained 
by the expertise reversal effect (Kalyuga et al. 2003). This effect 
predicts that over-scaffolding for students who do not need it 
creates extraneous cognitive load and increased frustration 
(Kalyuga et al. 2003). In this case, the adaptive support system 
may have been delivering hints that were not needed. Thus, 
further work may be needed in tuning the adaptive support 
system’s calculation of the probability guiding the hint delivery.

Finally, flow theory may offer an explanation for the non-
significant impact of game satisfaction and posttest score. 
Csikszentmihalyi (2014) explained that the feeling of “fun” or 
enjoyment in the context for flow intersects with, but differs 
from, its counterpart in the context of satisfaction. In the context 
of satisfaction, enjoyment is not related to achieving goals or 
completing tasks in-game but is rather related to instinctual 
needs, like aesthetics, storyline, or other elements which also 

can be part of the flow experience. However, in a flow state, 
enjoyment involves more than instinctual aspects (Wiebe 
et al. 2014); the enjoyment in flow, rather, derives from “the 
achievement of emergent goals, that is, from one’s ability to 
respond to opportunities in the environment that one learns 
about” (Csikszentmihalyi 2014, p. 159). Thus, game satisfaction 
may have derived from game elements that were not directly 
related to the posttest assessment.

Instructional Implications

Broadly, the findings of this study have demonstrated that an 
adaptive game-based learning environment has the potential 
of bridging gaps in students’ prior knowledge, thus easing the 
burden on teachers’ needs to provide individualized support. 
A game-based environment such as Geniventure could be 
used at the beginning of a genetics unit as a way of engaging 
students with a wide range of prior experience and getting all 
of the students to the same level of proficiency prior to more 
in-depth genetics learning activities. However, our findings on 
the possible negative effects of overscaffolding more advanced 
students points to the need to refine the learning environment to 
provide more challenging options.

The result of the path analysis has demonstrated the 
particular importance of science outcome expectancy with 
regard to entering a flow state during gameplay. This has 
practical implications, especially the degree to which teachers 
engage students in their outcome expectancies. Various studies 
across domains (e.g., health care, education, psychology) have 
suggested that helping individuals to explicitly identify the goals 
and objectives of certain activities before the activities happen 
evidently increases their outcome expectancies (e.g., Reesor 
et al. 2017; Scaduto et al. 2008; Settlege 2000). Teachers can 
help students identify the objectives by explicitly telling their 
students all the goals of the tasks or activities they are about 
to do. This enables students to maintain focused attention on 
the tasks being performed and therefore optimizing learning 
outcomes. Finally, the significant impact of the game-based 
environment on students’ genetics learning suggests that the 
Geniventure approach to representing (visualizing) key genetics 
concepts was effective in supporting conceptual understanding. 
Thus, teachers might incorporate similar representational forms 
in their instruction outside of the game to help reinforce key 
ideas.

Conclusion, Limitations, and Directions 
for Future Research

In this study, we demonstrated that the outcome-expectancy 
value theory of achievement motivation, in connection with 
flow theory, provided a powerful explanatory model of 
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genetics learning in a game-based learning environment. 
We found that science outcome-expectancy belief had 
a direct impact on students’ flow experience during 
gameplay, whereas science self-efficacy was found to be 
more connected with feelings of frustration. We also found 
that prior knowledge did not have a significant impact on 
students’ flow experience but was significantly associated 
with feelings of frustration. Finally, our results indicated 
that flow experience during gameplay increased students’ 
genetics learning; however, game satisfaction did not have 
an impact on students’ learning.

As this study had some limitations, it is important to 
exercise care when interpreting the results. First, we used 
only one item to measure flow experience and feelings of 
frustration. This may reduce the reliability values of the 
results of our study, which may in turn impact several of 
our findings. Future studies might address this limitation 
and replicate this study by adding more items—at least 
three for each construct (Marsh et al. 1998)—to increase 
its reliability. Second, the science self-efficacy and 
outcome-expectancy belief constructs used in this study 
were designed for science learning in general, not genetics 
learning specifically. This may partially explain why the 
correlations and impact were not sufficiently strong. Future 
research could address this issue by changing the constructs 
to fit more specific contexts. Moreover, future studies could 
add other components of expectancy-value theory, such 
as value constructs (Wigfield 1994), to better examine the 
connection between the two theories. Finally, we collected 
classroom observations as part of this study to confirm 
general fidelity of implementation (Wilson et al. 2018). 

However, the observation protocols were not focused on 
students’ motivational aspects and flow experience and thus 
were not integrated directly into the results. Collecting data 
related to current studies’ variables of interest from student 
interviews and classroom observations might help further 
explain and understand the mechanism of students’ learning 
in game-based environments.

Appendix 1

Psychometric properties of all instruments used in this study.

Science self‑efficacy

Item Measure (Scale 
100)

Infit MNSQ Outfit MNSQ Cronbach’s alpha 
if item deleted

Person reliability Item reliability

I am sure of myself when I 
do science

47.07 0.88 0.91 0.676 0.72 0.96

I know I can do well in 
science

39.35 0.74 0.68 0.588

I can handle most subjects 
well, but I cannot do a 
good job with science

44.55 1.39 1.36 0.737

I am sure I could do 
advanced work in sci-
ence

50.87 1.02 0.99 0.675
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Science outcome expectancy

Item Measure (Scale 
100)

Infit MNSQ Outfit MNSQ Cronbach’s alpha 
if item deleted

Person reliability Item reliability

I would consider a 
career in science

51.78 1.23 1.23 0.903 0.88 0.96

I expect to use sci-
ence when I get out 
of school

41.56 1.08 1.02 0.897

Knowing science 
will help me earn 
a living

42.55 0.89 0.90 0.891

I will need science 
for my future work

46.49 0.83 0.83 0.889

Science will be 
important to me in 
my life’s work

47.69 0.87 0.86 0.894

Genetics assessment

Item Measure (Scale 
100)

Infit MNSQ Outfit MNSQ Cronbach’s alpha 
if item deleted

Person Reliability Item reliability

Item1 45.97 0.84 0.68 0.866 0.83 0.98
Item2 45.64 0.90 0.80 0.867
Item3 38.15 0.82 0.58 0.867
Item4 34.72 0.82 0.56 0.868
Item5 49.15 1.03 1.04 0.869
Item6 45.43 1.08 1.30 0.870
Item7 43.55 1.19 1.30 0.873
Item8 49.09 0.75 0.63 0.863
Item9 45.01 0.89 0.78 0.867
Item10 56.99 0.94 0.95 0.867
Item11 55.34 0.86 0.83 0.866
Item12 55.12 0.71 0.63 0.862
Item13 40.72 0.94 0.81 0.869
Item14 62.32 1.05 1.15 0.868
Item15 45.34 0.99 1.05 0.869
Item16 53.54 0.98 0.97 0.867
Item17 37.99 0.93 0.65 0.869
Item18 43.66 1.04 1.05 0.869
Item20 50.67 1.00 0.98 0.867
Item22 56.85 1.26 1.45 0.872
Item23 45.54 1.04 1.00 0.869
Item24 59.58 1.32 1.41 0.873
Item25 72.66 1.07 1.40 0.871
Item26 58.30 1.36 1.46 0.873
Item28 46.30 1.09 1.35 0.870
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Appendix 2

Lists of Learning Objectives and Genetics Concepts Associ-
ated with Geniventure and Genetics Assessment.

Learning objectives

LG 1. There are predictable correlations between an 
organism’s genes and its traits.

LG 2. Genetic information is passed to an individual from 
both its parents via their gametes.

LG 3. Processes of inheritance involve randomized events 
that produce predictable patterns in offspring populations.

LG 4. Genes are instructions for constructing proteins.
LG 5. Proteins carry out a variety of functions in cells.
LG 6. Protein function is a result of protein structure.

Genetics concepts

 1. Sex determination (LG1.A3)
 2. Simple dominance (LG1.C2a)

Game satisfaction

Item Measure (Scale 
100)

Infit MNSQ Outfit MNSQ Cronbach’s alpha 
if item deleted

Person reliability Item reliability

Using Geniventure was 
worthwhile

49.22 0.94 1.05 0.817 0.71 0.55

I consider my experience 
a success

46.20 1.10 0.92 0.833

My experience was 
rewarding

49.08 1.01 0.95 0.810

I would recommend 
Geniventure to my 
classmates

50.25 0.91 0.81 0.806

Geniventure made me 
more curious about 
genetics

49.72 1.12 1.18 0.826

I felt involved in this 
experience

48.70 0.75 0.70 0.816

This experience was fun 48.04 1.11 1.07 0.822

 3. Recessive traits (LG1.C2b)
 4. X linked genes (LG1.C2c)
 5. Polyallelic (LG1.C2d)
 6. Incomplete dominance (LG1.C3)
 7. Genotype-to-phenotype mapping (LG1.P1)
 8. Phenotype-to-genotype mapping (LG1.P2)
 9. Epistasis (LG1.C4a)
 10. Gamete selection (LG2.P1)
 11. Parent genotypes (LG3.P1)
 12. Patterns in offspring (LG3.P3)
 13. Test cross (LG3.P4)

Appendix 3

The coding scheme for students’ game experiences (Adapted 
from Baker et al. 2010)
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Code for category Category Subcategory Definition Example Dimension

1 Displeasure/negative feeling/

experience (k = 0.857)

Boredom When participants expressed 

any weary feelings and no 

interest

“boring” [Student ID 234423] High frustration due to interface 

and control problems

Frustration When participants expressed 

any dissatisfaction, annoy-

ance, and other frustrating 

feelings/experiences

“The activities when you have 

to click the triangles to 

change the dragon color is 

very unclear and annoying” 

[Student ID 251491]

Confusion When participants expressed 

any noticeable lack of 

understanding

“On level 4.1 on the second 

gem, the amount of armor 

on the target dragon needs 

to be more apparent because 

I kept getting it wrong 

because I couldn’t tell how 

much armor was on the 

target dragon.” [Student ID 

252074]

“Level 3.2 was not easy to 

understand. I really strug-

gled with figuring out what 

I was supposed to do.” 

[Student ID 246228]

Difficult When participants expressed 

that the mission or challenge 

was too hard

“It was quite difficult to get a 

blue crystal at this point.” 

[Student ID 241121]

“it took me a full hour to do 

the very last task. really hard 

to understand and no hints. 

would appreciate a help but-

ton for when you are stuck” 

[Student ID 235709]

Display or other system 

problems

When participants expressed 

that they dissatisfied with 

display or interface, unclear 

directions and when they 

experienced any error or 

game issues

“The graphics were a little 

slow and some things were 

hard using the trackpad on 

the chromebooks, but we 

didn’t have another option” 

[Student ID 172936]

2 Neutral (k = 0.841) Neutral No apparent feeling or emotion, 

including “No,” “Nope,” and 

“Easy”

“There is nothing else I want 

to say about my experience 

with [game].” [Student ID 

247450]

Most students said “No”

Surprise When participants expressed 

amazement or wonder from 

the unexpected

“the thing is how the dragon 

has horn” [Student ID 

235814]

3 Pleasure/positive feeling/

experience

(k = 0.922)

Delight When participants expressed 

any satisfaction, including 

with pleasure on visuals, 

difficulty, and other experi-

ences. Also, this may include 

“Yes” and “OK”

“Really fun to learn and play.” 

[Student ID 234176]

“…it was fun and challenging.” 

[Student ID 216324]

“my experience was good 

because I learn about 

genes.” [Student ID 235803]

Students enjoyed playing the 

game and learned something 

from the game

Engaged concentration When participants expressed 

interest in the game resulting 

from the involvement in the 

game activity

“It was fun. Also it was a little 

challenging at first then I 

understood it.” [Student ID 

234425]

NR When participants’ statements 

are not interpretable and 

do not fall under the above 

criteria

“I’m a reptiliologist” [Student 

ID 238430]

“I don´t like the survey.” 

[Student ID 235590]
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