
Generating Game Levels to Develop Computer Science
Competencies in Game-Based Learning Environments

Kyungjin Park1, Bradford Mott1, Wookhee Min1, Eric Wiebe1,
Kristy Elizabeth Boyer2, and James Lester1

1 North Carolina State University, Raleigh, NC 27606, USA
{kpark8, bwmott, wmin, wiebe, lester}@ncsu.edu

2 University of Florida, Gainesville, FL 32601, USA
{keboyer}@ufl.edu

Abstract. Game-based learning environments hold significant potential for sup-
porting K-12 computer science (CS) education by providing CS learning experi-
ences embedded within engaging virtual worlds. However, many game-based
learning environments do not adaptively support individual students based on
their specific knowledge and skills. Often, this is because creating game levels is
highly labor-intensive, which limits the number of levels created to support stu-
dent learning. Procedural content generation (PCG) is a promising direction for
addressing this challenge by dynamically creating game levels that address spe-
cific student needs without requiring extensive development effort. In this paper,
we investigate a PCG framework driven by answer set programming (ASP), a
variant of logic programming that utilizes well-formed logical rules to express
constraints for valid game levels. We demonstrate how variations in CS learning
objectives and game-playing skills can be incorporated into ASP-based rules to
generate learner-adaptive levels in a middle-grades CS game-based learning en-
vironment. Evaluations of the generated levels suggest that the ASP-based level
generator not only reliably generates desired CS educational game levels but also
synthesizes a large set of diverse game levels. The findings suggest that the ASP-
based PCG approach has considerable promise for creating highly engaging and
adaptive game-based learning experiences for K-12 CS education.

Keywords: K-12 computer science education, game-based learning, procedural
content generation, answer set programming.

1 Introduction

Recent years have seen growing interest in game-based learning environments [1-4],
which engage students in situated problem-solving challenges within rich virtual worlds
[5]. In parallel, there is a growing recognition that computer science (CS) is a funda-
mental skill required by many career paths, which has intensified the need to develop
K-12 students’ CS competencies [6-9] and highlighted the potential of game-based
learning environments to support CS education [10-12]. However, the conventional ap-
proach of utilizing a linear sequence of game levels is fundamentally non-adaptive and
may not effectively address the needs of different students based on their level of con-
cept and skill mastery. This lack of adaptivity may result in undesirable learning experi-

2

ences (e.g., students adopting a trial-and-error approach without mastering concepts
because a game-based learning environment is too difficult). Likewise, students have
different levels of game-playing skills, which can affect their learning experiences [13].
Thus, adaptively generating challenges tailored to individual students’ knowledge and
game-playing skill is crucial for supporting mastery learning and engagement in game-
based learning by addressing limitations with “one-size-fits-all” approaches.
 Procedural content generation (PCG) automatically generates game content using a
range of algorithms that require limited human intervention [14]. In contrast to problem
generation in intelligent tutoring systems, in which problems are generated using tem-
plates [15, 16], PCG explores the generation of game objects and their layout that col-
lectively constitute a game level. However, level generation in game-based learning
environments is challenging for PCG because game levels must exercise the desired
learning objectives for individual students as well as target an appropriate level of dif-
ficulty for students based on their game-playing skill.
 This paper presents a novel approach to generating game levels for game-based
learning environments. Our work is the first to introduce a PCG framework that dy-
namically generates game levels to develop individual students’ CS competencies using
answer set programming (ASP) [17]. We evaluate our framework with respect to the
diversity of generated game levels and the presence of the CS learning objectives as
well as the game-playing skill specified as input for each generated level in the context
of a game-based learning environment for middle school CS education.

2 ASP-Based Level Generation in ENGAGE

ENGAGE is a game-based learning environment for middle school CS education, the
curriculum of which is guided by the K-12 CS Framework [18]. In ENGAGE, students
play the role of a protagonist who is sent to an undersea research station, where a rogue
villain has severed communication with the facility. In this work, we focus on generat-
ing levels for a specific type of challenge shown in Fig. 1a which requires students in
the game to connect their wrist computer with a quadcopter device using a pairing point,
and program the quadcopter to navigate across a water-filled area while avoiding ob-
stacles. Fig. 1b shows a top-down view of the room, which serves as the basis of all the
generated levels in this work.

Fig. 1. (a) In-game 3D view of the level, (b) top-down view, and (c) 2D tile-based representation.

 Generated levels incorporate four key learning concepts, Loop, Conditional, Se-
quence (i.e., requiring minimum of two controls in an unnested structure), and Nested
Control (i.e., requiring at least one nested control structure), based on the core computer
science concepts delineated in the K-12 CS Framework [18], and three game-playing

Barrier

Water

Ground Ground

QuadcopterStarting
Point

Exit
Point

Pairing
Point

Barrier

Water
Ground Ground

QuadcopterStarting
Point Exit

Point

Pairing
Point

3

skills (Low, Medium, High) based on the required number of jumps and the width of
the path the student’s in-game avatar must navigate. To visualize the generated levels,
we use a 2D tile-based level representation, as depicted in Fig. 1c.
 Answer set programming (ASP) is a declarative programming paradigm, which has
its roots in logic programming. In ASP-based PCG, a set of basic requirements and
constraints needed for content generation is represented in logical terms (i.e., rules and
ground facts) [19]. Then a solver (e.g., Clingo [20]) produces all configurations of con-
tent (e.g., game levels) that satisfy the specified constraints. ASP utilizes two constructs:
1) Choice Rules to enable non-determinism in choosing ground facts, and 2) Integrity
Constraints which explicitly define what must not be true in the logical world. Table 1
shows the specific constraints for the four CS learning objectives as well as the three
different rulesets for the game-playing skill variations we are considering in ENGAGE.

Table 1. Level category-specific Choice Rules and Integrity Constraints.

Category Choice Rules Integrity Constraints
Loop The number of repetitive parts. There exists only one path that goes

through the repetitive pattern.
Conditional Position of the conditional tile. There exists only one path that passes

through the conditional tile.
Sequence Conditional tile exists either at the

start of the loop or at the end of loop.
There exists only one path that requires
a sequence programming.

Nested
Control

Conditional tile exists anywhere
within a repetitive pattern.

There exists only one path that requires
nested control programming.

Game Skills
Positions where a jump is required
Lower the number of connected
ground tiles towards High level.

The character can jump up to one tile.
The character can move diagonally.
The character cannot jump diagonally.

3 Evaluation

Quantitative Evaluation. We measure the diversity among 100 levels created by the
ASP-based level generator using the Clingo [20] solver for each of the 12 categories
(four learning concepts combined with three game-playing skills) using a coordinate-
based distance metric presented in previous works [21, 22]. The average diversity val-
ues of the ASP-generated levels within each category are shown in Table 2. A diversity
of 0 indicates that every matched pair of tile types between two levels is identical, while
1 indicates there are no tile types in common across the levels. The average diversity
score across all 12 categories is 0.290, which indicates that 29% of tiles (i.e., 113 tiles
out of 392 tiles) different between any pair of randomly chosen levels on average. This
demonstrates that our model generates levels different to a certain degree consistently.
While most categories achieved high diversity scores, Low game-playing skill levels
across all CS concepts show comparatively lower scores because fewer variations are
available within the walkable ground area in these levels.

Table 2. Diversity of 100 levels generated for each of the 12 categories
Loop Conditional Sequence Nested Control

Avg.
Low Med. High Low Med. High Low Med. High Low Med. High
0.132 0.327 0.299 0.234 0.244 0.369 0.135 0.248 0.307 0.135 0.248 0.307 0.290

4

Qualitative Evaluation. Two domain experts evaluated each level with respect to the
presence of the CS learning objectives as well as the game-playing skill required for
the level. The evaluators rated each level with game-playing skill (Low: 1, Medium: 2,
High: 3) and one binary value for each of the four CS concepts, where 1 indicates the
desired concept is present in the level, while 0 is not. The values reported in Table 3
are the averages of the two evaluators’ ratings for 100 generated levels. Results for
presence of CS concepts suggest that Sequence, Loop, and Conditional exhibit com-
plete agreements between the human raters, while comparably less agreement occurs
for the Nested Control. This phenomenon can be explained because some levels have a
conditional barrier at the front or end of a path with a repetitive pattern that does not
necessarily require use of nested blocks (e.g., it can be solved with a loop followed by
a conditional block). Also, we found that there is a small degree of disagreement be-
tween Medium and High game-playing skill levels, while Low skill levels were consist-
ently viewed as Low.

Table 3. Average human-evaluated presence of CS concepts and game-playing skills (GS).

ASP
Loop Conditional Sequence Nested Control

Low
(1)

Med.
(2)

High
(3)

Low
(1)

Med.
(2)

High
(3)

Low
(1)

Med.
(2)

High
(3)

Low
(1)

Med.
(2)

High
(3)

CS 1 1 1 1 1 1 1 1 1 0.55 0.8 0.65
GS 1.05 2.55 2.85 1.2 2.1 2.65 1 2.4 2.95 1 1.95 2.75

4 Conclusion

Game-based learning environments show significant promise for creating engaging
learning experiences for students. However, manually crafting a large number of game
levels, which is typically required to adaptively support students’ mastery learning, is
labor-intensive. In this work, we presented an ASP-based PCG framework that auto-
matically synthesizes game levels, and we investigated its generation capabilities for a
middle-grade CS game-based learning environment. Evaluation results suggest that the
ASP-based level generation framework creates diverse levels, while dynamically syn-
thesizing levels that capture both the learning and game-playing skill-focused specifi-
cations. Together, our framework shows significant potential for offering adaptive CS
learning experiences with enhanced replayability. In the future, it will be important to
investigate robust student modeling techniques to inform the decision-making of the
PCG framework to provide student competency-adaptive levels and effectiveness of
personalized levels in terms of developing students’ CS competencies.

Acknowledgements

This research was supported by the National Science Foundation under Grant
DRL-1640141. Any opinions, findings, and conclusions expressed in this material are
those of the authors and do not necessarily reflect the views of the National Science
Foundation.

5

References
1. Clark, D. B., Tanner-Smith, E. E., Killingsworth, S. S.: Digital games, design, and learning:

A systematic review and meta-analysis. Review of Educational Research, 86(1), 79-122
(2016).

2. Easterday, M. W., Aleven, V., Scheines, R., Carver, S. M.: Using tutors to improve educa-
tional games. In: Proceedings of the International Conference on Artificial Intelligence in
Education, pp. 63-71. Springer, Berlin, Heidelberg (2011).

3. Nguyen, H., Harpstead, E., Wang, Y., McLaren, B. M.: Student agency and game-based
learning: A study comparing low and high agency. In: Proceedings of the International Con-
ference on Artificial Intelligence in Education, pp. 338-351. Springer, Cham (2018).

4. Jackson, G. T., Dempsey, K. B., McNamara, D. S.: Short and long term benefits of enjoy-
ment and learning within a serious game. In: Proceedings of the International Conference
on Artificial Intelligence in Education, pp. 139-146. Springer, Berlin, Heidelberg (2011).

5. Spires, H. A., Rowe, J. P., Mott, B. W., Lester, J. C.: Problem solving and game-based
learning: Effects of middle grade students' hypothesis testing strategies on learning out-
comes. Journal of Educational Computing Research, 44(4), 453-472 (2011).

6. Grover, S., Basu, S., Schank, P.: What we can learn about student learning from open-ended
programming projects in middle school computer science. In: Proceedings of the 49th ACM
Technical Symposium on Computer Science Education, pp. 999-1004. ACM (2018).

7. Nouri, J., Zhang, L., Mannila, L., Norén, E.: Development of computational thinking, digital
competence and 21st century skills when learning programming in K-9. Education Inquiry,
11(1), 1-17 (2020).

8. Rich, K. M., Strickland, C., Binkowski, T. A., Moran, C., Franklin, D.: K-8 learning trajec-
tories derived from research literature: Sequence, repetition, conditionals. In: Proceedings
of the 2017 ACM Conference on International Computing Education Research, pp. 182-190.
ACM (2017).

9. Weintrop, D., Hansen, A., Harlow, D., Franklin, D.: Bringing computer science into ele-
mentary school classrooms. American Educational Research Association (2018).

10. Hicks, A., Dong, Y., Zhi, R., Cateté, V., Barnes, T.: BOTS: Selecting next-steps from player
traces in a puzzle game. In: Proceedings of the Second International Workshop on Graph-
Based Educational Data Mining (2015).

11. Bauer, A., Butler, E., Popović, Z.: Dragon architect: Open design problems for guided learn-
ing in a creative computational thinking sandbox game. In: Proceedings of the 12th Interna-
tional Conference on the Foundations of Digital Games, pp. 1-6. ACM (2017).

12. Min, W., Frankosky, M. H., Mott, B.W., Wiebe, E., Boyer, K.E., Lester, J.C.: Inducing
stealth assessors from game interaction data. In: Proceedings of the International Conference
on Artificial Intelligence in Education, pp. 212-223. Springer, Cham (2017).

13. Rowe, J. P., Shores, L. R., Mott, B. W., Lester, J. C.: Integrating learning, problem solving,
and engagement in narrative-centered learning environments. International Journal of Arti-
ficial Intelligence in Education, 21(1-2), 115-133 (2011).

14. Togelius, J., Kastbjerg, E., Schedl, D., Yannakakis, G. N.: What is procedural content gen-
eration? Mario on the borderline. In: Proceedings of the 2nd International Workshop on
Procedural Content Generation in Games. ACM (2011).

15. Singh, R., Gulwani, S., Rajamani, S.: Automatically generating algebra problems. In: Pro-
ceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence (2012).

16. Gierl, M. J., Lai, H., & Turner, S. R.: Using automatic item generation to create multiple‐
choice test items. Medical education, 46(8), 757-765 (2012).

6

17. Smith, A. M., Mateas, M.: Answer set programming for procedural content generation: A
design space approach. IEEE Transactions on Computational Intelligence and AI in Games,
3(3), 187-200 (2011).

18. K-12 Computer Science Framework. https://k12cs.org/ (2016).
19. Sterling, L., Shapiro, E. Y.: The art of Prolog: Advanced programming techniques. MIT

press (1994).
20. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Clingo = ASP+ control: Preliminary

report. arXiv preprint arXiv:1405.3694 (2014).
21. Park, K., Mott, B. W., Min, W., Boyer, K. E., Wiebe, E. N., Lester, J. C.: Generating edu-

cational game levels with multistep deep convolutional generative adversarial networks. In:
Proceedings of the 2019 IEEE Conference on Games (CoG), pp. 345-352. IEEE (2019).

22. Liapis, A., Yannakakis, G. N., Togelius, J.: Enhancements to constrained novelty search:
Two-population novelty search for generating game content. In: Proceedings of the 15th
Annual Conference on Genetic and Evolutionary Computation, pp. 343-350. ACM (2013).

