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Abstract 
Accurately detecting player affect is an important component 
of player modeling. Multimodal approaches to player model-
ing have shown significant promise because of their capacity 
to provide a multi-dimensional perspective on player behav-
ior. However, obtaining sufficient data for training multi-
modal models of player affect presents significant challenges, 
including the prevalence of noisy, unbalanced, or missing 
data generated by multimodal sensor systems. To address this 
problem, we introduce a multimodal player affect modeling 
framework that improves player affect detection by using 
Auxiliary Classifier Generative Adversarial Networks (AC-
GANs). We demonstrate the use of a Wasserstein distance-
based approach for filtering synthesized data created in a data 
augmentation framework, and we investigate the effective-
ness of the AC-GAN discriminator as an alternative approach 
for detecting player affect. Results show that AC-GAN based 
affective modeling outperforms baseline methods while en-
hancing player models through synthetic data generation and 
improved affect detection. 

 Introduction   
Player modeling is critical for player-adaptive games that 
dynamically tailor gameplay to individual users (Yannaka-
kis and Togelius 2018). Player modeling has been investi-
gated across a range of applications, including interactive 
narrative (Wang et al. 2018) and procedural content genera-
tion (Summerville et al. 2018), as well as game balancing 
and difficulty adjustment (Zohaib 2018). An important as-
pect of player modeling is recognizing players’ affective 
states during gameplay, such as engaged concentration, 
frustration, and boredom. Affect plays a key role in player 
engagement, and it provides a lens for understanding player 
experience and informing AI-enabled game designs that dy-
namically adjust to player emotions and subsequently create 
more engaging experiences.  
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 Recent years have seen growing interest in multimodal 
approaches for detecting player affect. Multimodal affect 
detection has been shown to yield improved affect classifier 
performance and robustness compared to unimodal tech-
niques (Bosch et al. 2016; Sun et al. 2014). As hardware 
sensors for tracking eye gaze (Min et al. 2017), body move-
ment (Grafsgaard et al. 2012), and facial expression 
(Soleymani et al. 2015) have improved in price and accessi-
bility, multimodal sensor systems have seen a growing role 
in computational models of player affect. In parallel, sensor-
free affect detectors have emerged that eschew sensor data 
and instead rely upon interaction log data, including game-
play traces (Min et al. 2017) and keystroke data (Sun et al. 
2014), to predict players’ affective states. Interaction-based 
affect detection is particularly useful in contexts where 
physical sensors are too intrusive, too expensive, or are oth-
erwise prohibitive. However, combining sensor-free and 
sensor-based approaches for multimodal affect detection has 
shown promise across a variety of domains and contexts 
(Bosch et al. 2016; Psaltis et al. 2018; Min et al. 2017). 

 Multimodal machine learning approaches to affect detec-
tion require large quantities of training data from each mo-
dality. However, multimodal sensor systems often suffer 
from several problems, including calibration issues, sensor 
noise, missing or imbalanced data, and data storage con-
straints. Similarly, interaction-based affect detectors must 
contend with issues such as hardware failure, software er-
rors, and logging issues. These challenges can significantly 
impact the amount of data available to train multimodal af-
fect detection models, raising concerns about overfitting and 
data sparsity that can adversely impact the accuracy and ro-
bustness of player affect models. 

 We address the issue of insufficient data for multimodal 
player affect detection with Auxiliary Classifier Generative 
Adversarial Networks (AC-GANs). AC-GANs, which can 
effectively model multimodal data distributions, are utilized 

 



to generate synthetic data consisting of posture and game-
play data captured from players interacting with a serious 
game, TC3Sim, for training emergency medical skills. To 
ensure the quality of the augmented dataset produced by the 
AC-GAN, we demonstrate the effectiveness of a filtering 
method based on the Wasserstein distance metric to ensure 
the augmented multimodal data follows the original data 
sample’s distribution (Vallender 1974). Finally, we demon-
strate the effectiveness of using the AC-GAN discriminator 
network as a classification model for detecting players’ run-
time affective states during gameplay with TC3Sim.   

Related Work 
Recent years have seen growing interest in multimodal 
player modeling. Martinez et al. (2013) investigated the use 
of deep learning techniques for affect detection using sev-
eral physiological modalities captured from users playing a 
prey/predator video game. Similar use of sensor-based and 
sensor-free modalities have informed the development of 
player engagement models across a range of games and con-
texts (Bosch et al. 2016; DeFalco et al. 2018; Psaltis et al. 
2018). Related work has explored the relationship between 
physical and physiological behavioral patterns and self-re-
ported gameplay experiences (Yannakakis and Hallam 
2008). Multimodal player modeling has been investigated 
within game-based learning environments for tasks such as 
student goal recognition (Min et al. 2017), predicting prob-
lem-solving performance and gameplay outcomes (Liapis et 
al. 2019), and early prediction of engagement and cognitive 
load (Wiggins et al. 2018). 

 Models of player affect when engaging with games can 
be utilized to inform user-adaptive gameplay and enhance 
player experiences. DeFalco et al. (2018) explored the use 
of frustration detection models to provide adaptive feedback 
to players. Hernandez et al. (2014) used affective models to 
provide personalized game narratives based on the emo-
tional progression of players. Affective models have also 
been used to create affect-responsive gameplay experiences 
that encourage positive player affect (Blom et al. 2014). 

 Generative models for data augmentation, such as gener-
ative adversarial networks (GANs) and conditional GANs, 
have seen increased usage within affective modeling (Zhu 
et al. 2018; Chatziagapi et al. 2019; Krokotsch and Böck 
2019). Zhu et al. (2018) investigated the effectiveness of 
GAN-based data augmentation for emotion detection using 
convolutional neural networks. Krokotsch and Böck (2019) 
applied GANs within an unsupervised learning framework 
to generate synthetic affective speech data. Chatziagapi et 
al. (2019) used conditional GANs to resolve class imbal-
ances in a similar speech-based emotion detection task. Qiu 
and Zhao (2018) applied AC-GANs as a denoising approach 
in a cognitive emotion recognition task. Although GANs 

have received significant attention in the affective compu-
ting community, the use of AC-GANs to augment multi-
modal data for player affect detection has not been explored.  

 The novelty of our work includes 1) the use of AC-GANs 
as a generative and discriminative approach to improve af-
fect detection; 2) the use of a Wasserstein distance-based fil-
tering mechanism to guide generation of synthetic affect 
data; 3) the application of AC-GAN based affective model-
ing to posture and gameplay interaction data (in contrast to 
facial expression or speech data); and 4) our focus on mul-
timodal data augmentation to model player emotions arising 
naturalistically during interactions with a serious game. 

Dataset 
The dataset we use to investigate GAN-based multimodal 
affect detection consists of data from students engaged with 
a serious game for emergency medical skills training called 
TC3Sim. The data was collected during a study conducted at 
the United States Military Academy with 119 first-year ca-
dets (83% male, 17% female). While the cadets engaged 
with TC3Sim, two researchers observed the participants and 
recorded observations of students’ affective states in accord-
ance with the Baker Rodrigo Ocumpaugh Monitoring Pro-
tocol (BROMP) (Ocumpaugh et al. 2015). These observa-
tions serve as target labels for affect recognition. A Mi-
crosoft Kinect for Windows (version 1) was positioned in 
front of each player to capture skeletal vertex coordinate 
data on the player’s posture and upper-body movement dur-
ing gameplay. In addition, time-stamped interaction logs 
from player actions in TC3Sim were recorded. We utilize 
this dataset to investigate GANs for generating synthetic 
data, as well as to train and validate multimodal affect de-
tection models for player experiences with TC3Sim. 

TC3Sim Game-Based Learning Environment 
TC3Sim is a widely used serious game for training tactical 
combat casualty care skills (Figure 1). During the game, 
players assume the role of a combat medic in a simulated 
military training scenario. Players navigate a series of sim-
ulated scenarios centered upon administering emergency 
medical care to injured computer-controlled teammates in 
accordance with U.S. Army medical procedures. Each 
player completed four training scenarios, ranging from sim-
ple application of a tourniquet to a scenario where the in-
jured character expires regardless of the medical care ad-
ministered by the player. Players engaged with TC3Sim in-
dividually, and sessions lasted approximately one hour.  

Affect Observation Protocol  
A pair of trained observers followed the BROMP observa-
tion protocol (Ocumpaugh et al. 2015) to label players’ af-
fective states during interactions with TC3Sim. The two 



 

 

 Figure 1: TC3Sim Serious Game for Emergency  
Medical Skills Training. 

observers achieved an inter-rater agreement exceeding 0.6 
in terms of Cohen’s kappa. During the study, six distinct af-
fective states were recorded: boredom, confusion, engage-
ment, frustration, surprise, and anxiety. After removing any 
affective observations recorded during times when partici-
pants were not using TC3Sim and observations in which the 
two coders disagreed with one another, there were 755 ob-
servations remaining. 435 of the BROMP observations were 
labeled as engaged (M = .58, SD = .24), 174 as confused (M 
= .23, SD = .19), 73 as bored (M = .10, SD = .16), 32 as 
frustrated (M = .04, SD = .18), 29 as surprised (M = .04, SD 
= .05), and 12 as anxious (M = .02, SD = .09). Due to the 
low number of observed instances of anxious, we exclude 
this affective state from our work.  

Methodology 
As a response to the relatively small size of the dataset, we 
seek to improve the accuracy of multimodal affect detection 
models by increasing the amount of available training data 
through synthetic data generation. Because of significant 
class imbalance issues in the data, we generate augmented 
data based on the original data points and only add generated 
instances of minority class instances to the dataset. After the 
dataset augmentation process, we train five binary classifi-
ers for the five target affective states: bored, confused, en-
gaged concentration, frustrated, and surprised.  

Feature Representation 
The Kinect captured 3D coordinate data for 91 vertices. As 
the basis for the feature engineering process, we selected 
three vertices to track student posture: top_skull, cen-
ter_shoulder, and head. The selection of these particular 
vertices is supported by prior work on Kinect-based affec-
tive modeling (Grafsgaard et al. 2012). From this data, we 
distilled 73 posture-based features providing a summative 
perspective on participants’ body posture. For each of the 

three vertices, 18 statistical features were generated. The 
features included the most recent observed distance, most 
recent Z-coordinate, minimum observed distance, maxi-
mum observed distance, median distance, and variance in 
observed distances. Distance was defined as the Euclidean 
distance of the vertex from the Kinect. In addition, summa-
tive features for each vertex were calculated using the min-
imum distance, maximum distance, median distance, and 
variance in distance observed across the preceding 5, 10, and 
20 second windows prior to each affect observation. In ad-
dition to these 54 features, we generated several net_change 
features representing the total change in position and dis-
tance from the Kinect sensor over time windows of 3 and 20 
seconds. Finally, three features indicating whether the stu-
dent was sitting forward, upright, or backwards were com-
puted using the median distance of each head vertex for each 
workstation and the current distance of the head vertex from 
the Kinect sensor. These features were then computed 
across time windows of 5, 10, and 20 seconds, in addition to 
the entire gameplay session up to the current BROMP ob-
servation. 

 Additionally, we generated 48 temporal features based on 
the “velocity” of the head vertex. These features were gen-
erated by calculating the delta values between two consecu-
tive Kinect readings and then calculating the mean, median, 
maximum, and variance of the corresponding velocity val-
ues across time windows of 3, 5, 10, and 20 seconds prior to 
each BROMP observation. This feature engineering was 
only completed for a single vertex (head) due to the large 
number of features generated for a single vertex.  

 Interaction-based features were generated from gameplay 
data logs collected during player interactions with TC3Sim. 
These features capture player actions performed during the 
gameplay sessions as well as information about the status of 
non-player characters (NPC) throughout the course of the 
game. Features extracted from NPC-based patients include 
changes in systolic blood pressure, exposed wounds, lung 
volume, remaining blood volume, and bleed rate. Features 
based on player gameplay actions include checking a pa-
tient’s vital signs, conducting a blood sweep, corresponding 
with a patient, or requesting a medical evacuation. Each fea-
ture was cumulatively calculated over the preceding 20 sec-
onds prior to each BROMP observation. This process pro-
duced 39 distinct interaction-based features. Additional 
analysis of the predictive value of specific features in this 
dataset can be found in (Henderson et al. 2020).  

Auxiliary Classifier Generative Adversarial Net-
works 
Auxiliary Classifier Generative Adversarial Networks (AC-
GANs) (Odena, Olah, and Shlens 2017) are an extension of 
generative adversarial networks which consist of two deep 
neural network models, a generator and a discriminator, 



that compete against one other in an adversarial fashion 
within a zero-sum setting to generate synthetic data that re-
sembles the original data used for training (Goodfellow et 
al. 2014). Using a random Gaussian noise vector as input, 
the generator aims to synthesize realistic data that deceives 
the discriminator, whose task is to accurately distinguish be-
tween “real” data from the training data and “fake” data pro-
duced by the generator. The discriminator loss is backprop-
agated through both components of the GAN, with theoret-
ical convergence achieved when the components’ losses 
reach a Nash equilibrium. Conditional GANs extend this 
model by providing associated information to both the gen-
erator and discriminator, such as a class label associated 
with the desired synthetic output (Mirza and Osindero 
2014). AC-GANs deviate from the conditional GAN archi-
tecture by allowing the discriminator to predict the class la-
bel of the generated sample as well as the data source (i.e., 
“real” or “fake” status). The generator aims to minimize the 
ability of the discriminator to distinguish between real and 
fake data, while maximizing its ability to predict the class 
label of the generated data. This often leads to a more stabi-
lized training process and also allows the GAN to learn a 
latent space representation that does not rely on the class la-
bel as input, unlike a standard conditional GAN. The dis-
criminator’s ability to be trained to predict the class label of 
the generated data lends itself for additional use as an affect 
classification model, a property that is investigated within 
this work. 

Wasserstein Filtering 
To ensure that our synthetic data accurately reflects the dis-
tribution of the original dataset, we utilize a filtering process 
based on the Wasserstein metric (Vallender 1974). Also 
known as the “earth mover’s distance,” this metric is 
grounded in optimal transport theory and is a method to 
quantify the distance between two probability distributions. 
We select this metric due to its ability to account for both 
the probability density of the synthetic data compared to the 
original distribution and also the distance within a defined 
metric space, giving it an advantage over related methods 
such as Kullback-Leibler (KL) divergence.  
 Once the AC-GAN is used to generate batches of 50 aug-
mented data samples, using a Gaussian noise vector and the 
minority class label as the conditioning variable to the gen-
erator, the average Wasserstein distance between each fea-
ture and the corresponding feature in the original dataset is 
computed across all features for each generated sample in a 
single batch. After this process is repeated for 10 batches, 
the batch with the lowest average Wasserstein distance is 
selected for inclusion in the augmented dataset. This process 
continues iteratively until all classes in the dataset are uni-
formly distributed. This method ensures that the synthetic 
data contains an appropriate variance level beneficial for the 

affective models while not creating closely identical exam-
ples of the original minority data, which could induce over-
fitting in the affective models.  

Affect Model Evaluation 
Using the balanced datasets, we evaluate several different 
machine learning models and determine which model pro-
duces binary affect classifiers with the greatest accuracy. 
For each affective state (e.g., engaged, confused, bored, 
frustrated, surprised), a “raw” dataset is constructed with bi-
nary labels indicating whether or not a given BROMP ob-
servation is a positive instance of that affective state. We use 
five different models for each affective state: support vector 
machine (SVM), random forest (RF), Gaussian naïve Bayes 
(NB), logistic regression (LR), and multilayer perceptron 
(MLP). For evaluations involving a GAN model, the trained 
discriminator was retained from the data augmentation 
phase and trained further using the same data as the other 
five models. The discriminator’s predictions of the class la-
bel were used during the affect model evaluations. The mod-
els’ classification performance is measured in terms of Area 
Under the Curve (AUC) as the primary evaluation metric to 
account for model correctness in the face of class imbalance. 
We also include the predictive accuracy as well as the F1 
score, recall, and precision for each model to illustrate the 
tradeoffs inherent among different evaluation metrics. To 
serve as a baseline against which we compare our affective 
models’ classification performance, we train the same set of 
models on the raw normalized dataset without any prior data 
augmentation. 

 We compare our data augmentation framework against 
two common approaches for resolving class imbalance is-
sues in affective modeling: minority cloning and Synthetic 
Minority Over-Sampling Technique (SMOTE). Minority 
cloning involves the duplication of each instance of the mi-
nority class at a rate that brings the classes closer to a bal-
anced distribution. SMOTE selects a minority data sample 
at random and then linearly interpolates synthetic data 
points between the selected point and another randomly se-
lected minority sample chosen by a K-nearest neighbor al-
gorithm (Chawla et al. 2002).  
 The models were trained using 5-fold cross-validation 
with data splits maintained on a player level to prevent data 
leakage among individual gameplay sessions. 5-fold cross-
validation was chosen to maintain an adequate number of 
positive instances of each affective state within each valida-
tion fold. The class distribution within each fold was main-
tained using stratified sampling. Prior to training, the train-
ing dataset was normalized so that each feature’s range fell 
between [-1, 1]. Following normalization, feature selection 
was performed by retaining a subset of features that con-
tained the highest chi-squared test values with the class var-
iable. Normalization, feature selection, and class balancing  



 

 

Figure 2: Data Augmentation for Affect Model Training Using an AC-GAN.  

took place with the training set of each cross-validation step 
to ensure that data leakage did not occur during baseline or 
GAN upsampling. The data augmentation process using the 
AC-GAN is illustrated in Figure 2. 

Results 
For each upsampling technique and affective state, we eval-
uate five classification techniques (SVM, RF, NB, LR, and 
MLP) in addition to the AC-GAN discriminator. The high-
est-performing models are presented in Table 1, with the re-
sults of the optimal classifiers in terms of area under the 
curve (AUC) shown in bold. We compare our results to the 
baseline classifiers trained on the original dataset as well as 
classifiers trained on augmented data that underwent differ-
ent forms of upsampling.  

 AC-GAN data augmentation outperformed each of the 
other upsampling approaches in terms of AUC with the ex-
ception of bored. For each of the 4 remaining affective 
states, the AC-GAN combined with the Wasserstein filter-
ing (AC-GAN-W) outperformed the standard AC-GAN in 3 
of 4 cases. Additionally, the AC-GAN discriminator was se-
lected as the optimal affect model in 5 of 10 possible cases 
across the two AC-GAN upsampling tests for the 5 distinct 
affective states (an AC-GAN discriminator was not trained 
for the baseline, cloning, or SMOTE upsampling experi-
ments). This 50% selection rate was the highest selection 
rate among all affective models, compared to 20% (5/25) for 
SVM, 32% (8/25) for naïve Bayes, 12% (3/25) for logistic 
regression, and 16% (4/25) for multilayer perceptron.   

Discussion 
The results indicate that AC-GANS are the highest-perform-
ing upsampling approach for 4 of the 5 affective states. The 
lone exception, bored, demonstrated very high AUC values 
for all of the upsampling techniques. In this case, the AC-

GAN upsampling technique outperformed the baseline, but 
the other upsampling techniques induced higher AUC 
scores from the models than the AC-GANs. This may be due 
to predictive anomalies in the data or boredom-specific be-
havioral cues, which warrant further investigation.  

The impact of the AC-GAN augmentation was more sig-
nificant for frustrated and surprised, the two most 
imbalanced classes in the dataset. One explanation for this 
behavior is that the data points belonging to the minority 
class are likely highly localized, as these instances of frus-
trated and surprised comprise 4.2% and 3.8% of the total 
dataset, respectively. Because SMOTE is based on a K-near-
est neighbor approach, the augmented data will be contained 
within the same range as the original data points. 

 Minority cloning does not introduce variance during data 
augmentation, and as a consequence, may cause classifiers 
to overfit minority data, which is likely to harm affect de-
tector accuracy. While SMOTE introduces some variance 
during data synthesis, it is limited by its dependence upon 
producing samples using linear interpolation. This could 
also lead to the predictive model conforming to the localiza-
tion of the minority class and overfitting of the model. One 
aspect of using generative models such as AC-GANs for 
data augmentation is their capacity to model complex rela-
tionships between various data attributes through non-linear 
transformations and generate synthetic data according to the 
underlying distributions while still maintaining a beneficial 
amount of variance for the classifiers. It should be noted that 
the results indicate that the Wasserstein distance-filtering 
approach is an effective method of enforcing an adequate 
variance level in the synthetic data while still retaining ac-
curate modeling of the original data distributions. This al-
lows the AC-GAN-based data augmentation process to be 
more robust when encountering heavily skewed data. 
 Of note is the performance of the AC-GAN discriminator 
as the most frequently selected optimal affect model. Using 
subsets of real and artificial data from the generator, the 
weights of the AC-GAN are initially trained within a multi-  
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Table 1: Optimal Models for Each Combination of Modalities and Affective States. 

 Bored Confused 
Upsampling Model AUC Acc. F1 Prec. Rec. Model AUC Acc. F1 Prec. Rec. 
Baseline NB 0.701 0.542 0.277 0.176 0.889 NB 0.520 0.509 0.229 0.146 0.539 
Cloning SVM 0.815 0.827 0.461 0.354 0.794 NB 0.518 0.507 0.229 0.145 0.539 
SMOTE LR 0.817 0.839 0.474 0.371 0.785 NB 0.518 0.513 0.228 0.146 0.527 
AC-GAN NB 0.774 0.831 0.421 0.324 0.696 MLP 0.533 0.662 0.232 0.257 0.296 
AC-GAN-W GAN-D 0.662 0.802 0.330 0.272 0.494 GAN-D 0.543 0.588 0.326 0.297 0.454 
 Engaged Concentration Frustrated 
Upsampling Model AUC Acc. F1 Prec. Rec. Model AUC Acc. F1 Prec. Rec. 
Baseline SVM 0.569 0.610 0.705 0.621 0.821 MLP 0.573 0.920 0.132 0.125 0.195 
Cloning SVM 0.569 0.610 0.705 0.621 0.821 LR 0.614 0.717 0.119 0.070 0.500 
SMOTE SVM 0.554 0.578 0.650 0.613 0.707 LR 0.654 0.847 0.194 0.128 0.445 
AC-GAN GAN-D 0.575 0.616 0.720 0.622 0.862 GAN-D 0.699 0.818 0.183 0.121 0.565 
AC-GAN-W GAN-D 0.571 0.523 0.461 0.557 0.432 MLP 0.748 0.664 0.173 0.097 0.840 

Surprised 
Upsampling  Model AUC Acc. F1  Prec. Rec. 
Baseline NB 0.517 0.389 0.077 0.041 0.656 
Cloning NB 0.530 0.388 0.080 0.043 0.685 
SMOTE SVM 0.501 0.801 0.054 0.033 0.176 
AC-GAN NB 0.562 0.679 0.077 0.044 0.436 
AC-GAN-W MLP 0.617 0.578 0.105 0.062 0.657 

task framing, meaning that the discriminator learns to not 
only distinguish trends of the real and artificial data, but also 
the binary class label of each sample. This factor may play 
a role in the enhanced performance of the AC-GAN discrim-
inator as an affect model. 

Conclusion 
Detecting player affect is a key component of player model-
ing. Computational models of affect enable the creation of 
affect-sensitive games that dynamically adapt to player 
emotions. Affective modeling has significant implications 
for enabling dynamic difficulty adjustment based on player 
emotions, virtual agents that dynamically respond to play-
ers’ emotions at run-time, and player analytics that can be 
utilized to inform game design decisions There is growing 
evidence suggesting that multimodal affect detection is an 
effective approach for modeling player affect in digital 
games. However, obtaining sufficient data to train multi-
modal machine learning-based models of player affect de-
tection is challenging, as it is often hindered by issues such 
as sensor noise, calibration issues, and mistracking.  

 We have presented a novel approach to multimodal affect 
detection that leverages data augmentation through the use 
of auxiliary classifier generative adversarial networks (AC-
GANs) and utilizes Wasserstein distance as a metric to filter 
generated data. We demonstrate the effectiveness of this ap-
proach with a serious game for emergency medical skills 
training called TC3Sim. We also demonstrate the 

effectiveness of using the AC-GAN discriminator as a 
higher-performing alternative to standard affect detector 
modeling techniques. Results of the evaluation have shown 
that our method induces higher predictive performance than 
two common class imbalance resolution methods including 
SMOTE and minority cloning on four of five targeted affec-
tive states with respect to AUC.  

 The results suggest several possible avenues for future 
work. Additional generative modeling techniques merit fur-
ther exploration for data augmentation, including different 
discriminator and generator architectures for AC-GANs, 
different GAN architectures such as Wasserstein Generative 
Adversarial Networks (W-GANs), and other generative 
modeling techniques such as variational autoencoders. An-
other promising direction is to investigate additional data fil-
tration methods and modeling techniques for affect recogni-
tion. Finally, it will be important to investigate the run-time 
integration of multimodal affective models into player-
adaptive games designed to enrich player experiences 
through affect-sensitive interventions.  
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