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Abstract. The role of affect in learning has received increasing attention from 
AIED researchers seeking to understand how emotion and cognition interact in 
learning contexts. The dynamics of affect over time have been explored in a 
variety of research environments, allowing researchers to determine the extent 
to which common patterns are captured by hypothesized models. This paper 
present an analysis of affect dynamics among learners using vMedic, which 
teaches combat medicine protocols, as part of their military training at West 
Point, the United States Military Academy. In doing so, we seek both to 
broaden the variety of learning contexts being explored in order better 
understand differences in these patterns and to test the theoretical predictions on 
the development of affect over time. 

1   Introduction 

The fundamental role of emotions in learning is well accepted if not fully understood. 
Though findings of negative correlations between boredom and learning generally 
replicate [9, 29], other affective states appear to be driven by their context and 
duration, with confusion appearing to differ in correlation to learning by context [9, 
29, 17], possibly mediated by the duration of confusion [20] and what experience 
induced the confusion [17].   

D’Mello and Graesser’s theoretical model of affect dynamics, the development of 
student affect over time [11], as well as their pioneering empirical work in this area 
[10], has brought needed attention to the study of the affective undercurrents of 
successful and unsuccessful educational experiences. Over the last decade, 
researchers have studied affect dynamics both in classroom settings using field 
observations [5, 16, 29] and laboratory settings using self-report [10, 11, 21].   

This research has illustrated several potential benefits to better understanding affect 
dynamics. First, by understanding affect dynamics, we can understand not just what a 
learner’s affect is right now but what it will be later, helping us predict a learner’s 
eventual outcomes. Understanding the natural developments in affect can help us 
design interventions that reinforce positive affective transitions and reduce negative 
transitions. It can also help us to understand the impacts of our interventions better; 
we should not congratulate ourselves on a positive transition if that transition would 
have happened with no intervention at all.    



However, in order to achieve a theoretical model of affective pathways that will be 
of broad use, it is important that this data used to inform these models reflects the 
diverse learning experiences of different learners and different learning contexts 
(including what learning system is being used). Understanding how affect dynamics 
vary – and are influenced by – different populations and contexts could be important 
to fully understanding the processes around affect dynamics. We already know, for 
instance, that the same affective state can manifest differently in behavioral terms 
between populations [23]. This current study investigates affect transitions, using data 
from in situ observations of learner affect, among US military cadets using vMedic, a 
game-based virtual environment that provides training in combat field medicine, 
representing a different population, domain, and type of interaction than in previous 
work on affect dynamics. Affective states observed included boredom, confusion, 
engaged concentration (flow), frustration, surprise and anxiety.  

2   Previous Research  

2.1   Cognitive-Affective Learning  

Researchers have long hypothesized a set of basic emotions (e.g., happiness, sadness, 
anger, disgust, fear, and surprise, [14]), but, as Table 1 summarizes, those working in  

Table 1.  Affective states studied in previous research on affect dynamics in online learning 
environments. Categories considered in the current study are highlighted in gray.  
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Anger x x
Anxiety x x
Boredom x x x x x x x x x x
Confusion x x x x x x x x x x
Curiosity x x
Delight x x x x x x
Disgust x
Eureeka x
Excitement x
Fear x
Flow x x x x x x x x x
Frustration x x x x x x x x x
Happiness x
Neutral x x x x x
Sadness x x
Surprise x x x x x x x



education domains typically focus on cognitive/affective states more common to 
learning contexts and thought to correlate to learning outcomes (e.g., [18]). These 
typically include boredom, confusion, engaged concentration (the affective state 
related to Csikszentmihalyi’s construct of flow [8]), delight, and frustration, but may 
also include a range of other states (e.g., [12, 21]). 

2.2   Affect Dynamics  

One of the more prominent theories about the temporal dynamics of affect is D’Mello 
& Graesser’s [11] hypothesized model of affect dynamics for learning (shown in 
Figure 1 and summarized in Table 2). Based largely on Pekrun’s [25] control-value 
theory, this model suggests multiple possible pathways between engaged 
concentration (Csikszentmihalyi’s [8] flow), surprise, confusion, delight, frustration, 
and boredom. As Figure 1 illustrates, disequilibrium (experienced as confusion) plays 
a central role in this model, capturing the longstanding and ever-growing body of 
work showing the importance of confusion to learning (e.g., [9, 17, 20, 29]).  

 

 
Fig. 1. D’Mello & Graesser’s [11] posited model of affect dynamics during learning, adapted 
from Control-Value Theory.    

Table 2.  Summary of D’Mello & Graesser’s [11] hypothesized pathways. Pathways 
hypothesized in Figure 1 are shown, labeled, in this transition matrix; pathways that are not part 
of this model are shown in gray-scale. 

  to BOR to ENG to CNF to DEL to FRU to SUR 

fr. BOR             
fr. ENG     1a     1b 
fr. CNF   2a   2b 3   
fr. DEL   2c         
fr. FRU 4           
fr. SUR     1c       



Empirical research in affect dynamics, however, has found that other pathways 
may be common. D’Mello & Graesser [11] report two studies alongside their 
theoretical model. The first finds that only three of the hypothesized transitions (1a, 
2a, and 3) occur at levels above chance, along with one pathway that was not 
hypothesized (boredom to frustration). The second finds empirical evidence for four 
of their hypothesized pathways (1a, 2a, 3, and 4), but also evidence for two pathways 
that were not hypothesized (boredom to frustration as well as frustration to flow). 
Other studies have also failed to closely match this theoretical model. For example, 
Rodrigo’s [26] study of affect during Mathblaster found compelling evidence for only 
one of the hypothesized pathways (confusion to flow), and Guia et al., [16] found that 
in SQL-Tutor the hypothesized pathway of confusion to frustration was less likely 
than chance, while other hypothesized pathways were not significant at all. 

 
Fig. 2. Pathways found in D’Mello & Graesser’s (2012) empirical research.    

Much of the other research on affect dynamics has differed from D’Mello & 
Graesser [11] by including self-transitions (when a learner remains in the same 
affective state from one observation to the next) in calculations. Baker, D’Mello, 
Rodrigo, & Graesser [2] found that boredom and engaged concentration were likely to 
be persistent, across three different learning environments. In another study, Rodrigo 
et al., [30] found only engaged concentration was likely to show persistence, while a 
similar study by Rodrigo et al. [28] found persistence for boredom, confusion, and 
engaged concentration. Andres and Rodrigo [1] found persistence for confusion, 
engaged concentration, and frustration, but Guia et al. [16] found no affective states 
were significantly more likely than chance to persist. 

The picture becomes more complicated when additional affective states are 
included in the research. For example, Andres and Rodrigo [1] considered all of 
D’Mello and Graesser’s [11] affective categories (boredom, confusion, delight, 
engaged concentration, delight, frustration, and surprise) when studying Physics 
Playground [31]), but also added six others (angry, anxious, curious, happy, pride, 
and sad). Likewise, McQuiggan et al. [21], working in the context of a narrative 
environment (Chrystal Island), consider ten affective states, including six of those in 
D’Mello and Graesser’s [11] model (anxiety, boredom, confusion, delight, engaged 
concentration, and frustration) and four that were not (anger, excitement, fear, and 



sadness). Coding with expanded lists of affective states may change the base rates of 
observed affective categories. Furthermore, using expanded lists of affective states 
may qualitatively change the nature of the coding in ways that are not fully captured 
by mathematical modeling. 

3   Methods 

3.1   Learning Environment and Participants  

The learning environment observed in this study was vMedic (a.k.a. TC3Sim), a 
virtual world developed for the US Army by Engineering and Computer Simulations 
(ECS, Orlando Florida), which provides training in combat medicine and battlefield 
doctrine around medical first response. The system is administered through the Army 
Research Laboratory’s modular GIFT framework [15]. In this study, 108 West Point 
cadets (ages of 18-22) were observed using the vMedic system (shown in Figure 3). 

 
 

 
Fig. 3. Screenshot of vMedic scene where learner is expected to treat a combat victim.    

3.2   Observation Protocol (BROMP)  

While trainees used vMedic, their affective states were observed and recorded using 
the Baker Rodrigo Ocumpaugh Monitoring Protocol (BROMP 2.0; [24]). BROMP is 
a momentary time sampling method where learners are observed individually, in a 
pre-determined order. This ensures that each learner in an observation session is 



observed at roughly the same frequency as all of his or her peers. Observations are 
conducted by a BROMP-certified coder using HART, an android application which 
enforces the sampling method and automatically provides a time stamp for each 
observation. Observers record two distinct, but simultaneous observations about each 
learner: his or her behavior (usually on-task, on-task conversation, off-task, or gaming 
the system) and his or her affective state (usually boredom, confusion, engaged 
concentration, delight, and frustration). Because of the nature of momentary time 
sampling methods, affective states which are brief in nature (e.g., Eureka moments) 
are typically more difficult to capture using BROMP, but it is possible to modify 
BROMP coding schemes to accommodate relevant constructs that may be 
environment-specific (e.g., [23]). 

In this study two BROMP-certified observers coded for several of the more 
educationally common affective states (boredom, confusion, engaged concentration, 
frustration). Additionally, observers coded two constructs that are not typically used 
in BROMP coding schemes, surprise and anxiety. In this context, surprise reflected 
novel and unexpected experiences within the virtual world, such as an insurgent 
appearing from behind a building, rather than reflecting surprise with the learning 
content. Likewise, anxiety was related to (but distinct from) the observations that 
were coded as frustration. This distinction reflects previous research on fear and anger 
(e.g., [19]). vMedic often presents trainees with difficult or unresolvable medical 
situations, triggering a variety of different affective responses. Affective expressions 
by a learner that suggested caution or vigilance were coded as anxiety while those that 
reflected annoyance or defeat were coded as frustration. 

3.3   Data & Analysis (D’Mello’s L) 

In total, 756 of individual observations of affect were recorded: 12 anxiety, 73 
boredom, 174 confusion, 435 engaged concentration, 32 frustration, 29 surprise. The 
number of trainees being coded during these observations varied slightly from one 
observation session to the next, impacting the time it takes for an observer to return to 
a given learner. That is, the more learners being observed, the more time between 
observations of an individual learner, but on average, each learner was observed once 
every 122 seconds (stddev = 100.14). In general, the different methods employed for 
collecting data for affect dynamics research has resulted in data with a variety of 
characteristics, with some studies using a protocol like this one, leading to regular but 
fairly lengthy gaps between observations. Other studies have used field observation 
protocols with many more observers, leading to denser observation but stronger 
observer effects. Still other studies have used voluntary self-report data, which 
sometimes is more continuous and other times is more fragmented, depending on the 
learner’s willingness and ability to identify and express their emotions.  

In order to examine the common pathways from one affective state to the next, we 
calculated D’Mello’s L, the likelihood that a given affective state will transition to 
another affective state, [13]):  

 

𝐿 = 	
𝑃 𝑁𝐸𝑋𝑇 𝑃𝑅𝐸𝑉 − 𝑃(𝑁𝐸𝑋𝑇)

(1 − 𝑃(𝑁𝐸𝑋𝑇)
 



 
This metric is conceptually similar to Cohen’s Kappa, comparing a transition’s 
frequency to the base rate of the affective state that is transitioned into. A value of 
zero for D’Mello’s L indicates that a transition occurs no more frequently than would 
be expected from the overall proportion of time the destination affective state occurs. 
Values greater than zero indicate frequencies greater than chance, taking that base rate 
into account, with a value of one indicating that a specific transition always occurs. 
Values less than zero indicate a transition that is less likely than chance, with possible 
values of negative infinity. It is possible to determine whether a transition is 
statistically significantly more or less likely than chance by calculating a value of 
D’Mello’s L for that transition for each learner, and then comparing those values of 
D’Mello’s L to 0 (chance value) using a t-test for one sample (cf. [5]). Benjamini and 
Hochberg’s [6] post-hoc corrections are used here to adjust for conducting large 
numbers of comparisons.  

4   Results 

As discussed above, BROMP observations resulted in 756 observations, 
corresponding to 450 transitions (e.g., from anxiety to engaged concentration or from 
engaged concentration to confusion). Table 3 presents totals for each transition, which 
was then analyzed using D’Mello’s L. 

Table 3.  Transition matrix for the current study. Anxiety, which was not considered in 
D’Mello & Graesser’s (2012) model, is highlighted in dark gray. 

  to ANX to BOR to FLO to CNF to FRU to SUR total  

fr. ANX 0 1 5 1 0 0 7 2% 
fr. BOR 1 0 27 175 4 3 210 47% 
fr. FLO 4 32 0 61 14 10 121 27% 
fr. CNF 2 9 51 0 8 7 77 17% 
fr. FRU 2 1 5 4 0 0 12 3% 
fr. SUR 0 5 14 4 0 0 23 5% 

total 9 48 102 245 26 20 450 		
  2%	 11%	 23%	 54%	 6%	 4%	 		 		

 
Results are presented in Table 4, using the same format as the presentation of 

previous research findings discussed above, for comparability (plus the category of 
anxiety – ANX). Only statistically significant results (given post-hoc controls) are 
reported, and those transitions that are statistically less likely than chance are given in 
red.   



Table 4.  D’Mello’s L values for the likelihood of transitions within vMedic. Only statistically 
significant results given post-hoc controls are reported, with transitions less likely than chance 
given in red. Pathways that were not predicted in D’Mello & Graesser’s [11] model are given in 
gray, including pathways for anxiety, which are highlighted in darker gray. 

  to ANX to BOR to FLO to CNF to FRU to SUR 
fr. ANX       -0.268     
fr. BOR   -0.135   0.325     
fr. FLO   0.114 -0.916 0.401   

 fr. CNF     0.375 -0.358 
 

  
fr. FRU   -0.078     -0.066   
fr. SUR -0.022           

 
In total, we found 11 statistically significant transitions, but only four (shown in 

Figure 3) were more likely than chance. Two of these reflect the hypothesized central 
role of confusion in learning (engaged concentration to confusion, L = 0.401 and 
confusion to engaged concentration, L = 0.375). There was also two links that had not 
been previously reported: a transition from engaged concentration to boredom (L = 
0.114) and a transition from boredom to confusion (L = 0.325). The link from 
engaged concentration to boredom suggests that vMedic is relatively unsuccessful at 
keeping learners engaged in a sustaining fashion (though it is unclear if this is due to 
features of the game or features of the population using it); however, the link from 
boredom to confusion suggests that enough events occur during gameplay to prevent 
boredom from becoming an enduring problem, unlike in other environments (e.g. [2]).  
 
 

 
 
Fig. 3. Pathways found to be (positively) statistically significant in the current study, including 
the hypothesized loop between flow and confusion and the previously not hypothesized loop 
between flow and boredom.    
 

Results for transitions that occur at levels below chance are shown in Figure 4. 
Note that this figure includes one of the transitions hypothesized in D’Mello and 
Graesser’s [11] model to be more likely than chance, the transition from frustration to 



boredom. Contrary to that model, this transition was statistically significantly less 
likely than chance in vMedic, L = -0.078. This result may be due to the population of 
Army cadets, who may be better able to regulate their responses to otherwise 
frustrating events than previously studied populations (e.g., middle-schoolers). 
Learners were also less likely to be anxious after being surprised, and less likely to be 
confused after being anxious, results which are statistically significant despite the 
relative infrequency of anxiety in this data set. 

 
Fig. 4. Pathways found to be statistically less likely than chance in the current study.    

One additional finding that is curious is the relatively low probability of learners 
staying in their current affective state, with self-transitions (a transition from a state to 
itself) being less likely than chance for all four of the most commonly studied 
affective states (boredom, engaged concentration, frustration, and confusion). This 
pattern is in contrast to most of the previous work on affect dynamics (e.g., [1, 26, 28, 
30]), and may result from a combination between the fast pace of activity in vMedic, 
where learners switch activities with fairly high frequency, and the sampling rate of 
the BROMP method. However, it is worth noting that the former is a variable that has 
not been well controlled for in previous studies and that the latter has also varied 
widely from one research condition to another.  
 

5   Conclusions 

In this paper, we study the dynamics of affect within the simulation vMedic, using 
BROMP field observation to measure affect, and conducting statistical significance 
testing on whether the D’Mello’s L metric is different than zero across students, to 
determine which transitions are significantly less or more likely than chance. Our 
results differ from previous published results and a key theoretical model in showing 
a link from engaged concentration to boredom, a link from boredom to confusion, and 
the lack of a hypothesized link from frustration to boredom. In general, the difference 



of these results from this past work is probably attributable at least in part to 
differences between the populations (military cadets learning material relevant to their 
future compared to K-12 populations or undergraduates in lab studies learning 
material that is relatively arbitrary to them). A military cadet might be expected to 
have better self-regulatory skill than the other populations studied in the past, 
preventing frustration from becoming boredom. However, a military cadet might also 
be less engaged by a game than other populations, leading the fun of the game to 
quickly turn boring. We also find relatively low persistence of affect between 
observations, another contrast to past work. We hypothesize that this may be due to 
the relatively fast pace of change of activities within vMedic compared to many of the 
other environments studied. 

Investigating these hypotheses is a valuable area for future work. But the broader 
question is: what factors determine the differences in affect dynamics between 
contexts and studies? With a range of published studies on affect dynamics, we see a 
range of patterns – and relatively few of those patterns are consistent across studies or 
consistent with the one theoretical model published (e.g. [11]). Ultimately, it becomes 
worth asking whether affect dynamics are entirely contextual, or whether there are 
some patterns that reliably cut across studies. To the extent that affect dynamics are 
contextual, we need to ask what factors in the context best determine the patterns seen 
– is it the population? The system they are using? The design of the study? The 
method for measuring affect? The characteristics of individual students? 

Determining the answer to these questions will be necessary to achieve the goals 
originally set for affect dynamics research, including the development of interventions 
that can improve learning outcomes. They will also allow us to build a more 
comprehensive theory of how affect develops and unfolds over time.   
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