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Abstract. Team communication modeling offers great potential for adaptive 
learning environments for team training. However, the complex dynamics of 
team communication pose significant challenges for team communication 
modeling. To address these challenges, we present a hybrid framework 
integrating deep learning and probabilistic graphical models that analyzes team 
communication utterances with respect to the intent of the utterance and the 
directional flow of communication within the team. The hybrid framework 
utilizes conditional random fields (CRFs) that use deep learning-based 
contextual, distributed language representations extracted from team members’ 
utterances. An evaluation with communication data collected from six teams 
during a live training exercise indicate that linear-chain CRFs utilizing ELMo 
utterance embeddings (1) outperform both multi-task and single-task variants of 
stacked bidirectional long short-term memory networks using the same 
distributed representations of the utterances, (2) outperform a hybrid approach 
that uses non-contextual utterance representations for the dialogue classification 
tasks, and (3) demonstrate promising domain-transfer capabilities. The findings 
suggest that the hybrid multidimensional team communication analysis 
framework can accurately recognize speaker intent and model the directional 
flow of team communication to guide adaptivity in team training environments. 

Keywords: Team Communication Analytics, Probabilistic Graphical Models, 
Deep Learning, Distributed Language Representations, Natural Language 
Processing. 

1 Introduction 

There is broad recognition that team training can improve team effectiveness across a 
wide range of domains [1]. It can improve team knowledge, team coordination, and 
team leadership behaviors, which can in turn minimize errors, enhance productivity, 
and help ensure teams are successful. Adaptive team training holds significant potential 
for providing effective learning experiences by delivering tailored remediation and 
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feedback that support the development of teamwork and taskwork skills and 
dynamically address a team’s training needs [2, 3].  

A key challenge posed by team training is developing approaches to reliably 
assessing and diagnosing team processes in real time. Team training theory and 
research shows team communication provides a rich source of evidence about team 
processes that can support team training experiences [3-5]. Team members 
communicate with one another to develop a shared understanding of goals, tasks, and 
responsibilities [4], to coordinate actions [6], and to regulate social and cognitive 
processes associated with team performance [1, 7]. Accurate analyses of team 
communication can therefore provide deep insight into team cognition, collaboration, 
and coordination, which can ultimately be used to adaptively support team training 
needs. 

Work on team communication modeling has explored a variety of methods. For 
instance, latent semantic analysis (LSA) has been used to devise team communication 
analysis models and assess team discourse using team communication content, 
sequence, and structure [8]. However, LSA does not adequately account for the 
dynamically changing dialogue context and semantics of the utterances that could be 
used for in-depth team discourse analysis. More recently, approaches based on deep 
neural networks [9] and probabilistic graphical models [10] have demonstrated 
significant potential for performing fine-grained dialogue analyses using multi-level 
language data (e.g., characters, words, paragraphs, documents), as well as other 
discourse and context features (e.g., dialogue sequence, turn taking, task sequences, 
environmental events). These techniques offer considerable promise for producing 
more accurate representations of team communication. Thus, a key question is how we 
can most effectively leverage these recent advances to accurately analyze team 
discourse, assess team communication, predict team performance and, ultimately, 
provide adaptive training experiences for learners. 

In this paper, we present a hybrid, multidimensional team communication analysis 
framework supporting adaptive team training (Fig. 1). The framework leverages 
conditional random fields’ structured prediction and deep neural networks’ contextual 
language representation learning capabilities to classify team communication data with 
respect to the intent of utterances (i.e., speech acts [11]) and how information is 
conveyed to a team (i.e., team development categories). We investigate the hybrid team 
communication framework on transcripts of spoken utterances captured from six U.S. 
Army squads during a live capstone training exercise [12]. We evaluate the predictive 
performance of the hybrid framework optimized through cross-validation on a held-out 
test set and compare them to bidirectional long short-term memory networks, which are 
optimized through multiple configurations of multi-task learning and fusion methods, 
across the two classification tasks.  

2 Related Work 

Natural language processing techniques have been used in a wide range of learning 
analytics tasks to assess student knowledge and competencies, analyze student and 
teacher dialogue, and provide individualized feedback [13, 14]. Previous work has 
investigated automated essay scoring [15], short answer grading [16], discourse 
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analysis in classrooms for both students [17] and teachers [18], text difficulty 
classification [19], and tutorial dialogues [20]. More recently, deep learning-based 
natural language processing has been explored for learning analytics tasks [e.g., 15, 16, 
21], taking advantages of deep neural networks’ capabilities on distributed linguistic 
representation learning [22, 23] and highly accurate modeling in an end-to-end trainable 
manner [24, 25]. Closely related to team training and performance, deep learning-based 
methods have been investigated for computer-supported collaborative learning 
(CSCL). In CSCL environments, group members work collaboratively towards a 
shared goal and solve problems as they learn [26], and deep neural network-based 
methods have been used in CSCL environments for detecting disruptive talk [27] and 
off-task behavior [28] with the goal of engaging in dialogues that are most conducive 
to learning.  

While the majority of previous work on natural language processing in learning 
analytics has focused on tasks centered on individual learners, analyzing team dialogue 
could offer significant value to support adaptive team training experience and improve 
team performance. Team communication provides a window into how teams 
collaborate, coordinate, and distribute information in order to achieve a shared goal 
during team training and improve team performance [3, 29]. Consequently, many 
approaches have been investigated for analyzing team dialogue to obtain insight into 
teamwork, team performance, coordination processes, and training needs, including a 
growing body of work on computational approaches to team communication analysis 
[30]. For instance, LSA has been used to detect socio-cognitive roles in multiparty 
interactions [31] and team communication content analysis [8]. Researchers have also 
successfully utilized Markov models [32] and support vector machines utilizing multi-
party dialogue embeddings [33] to analyze temporal patterns of team communication, 

Fig. 1. Team communication analysis modeling for team training environments. 
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as well as hierarchical regression models to investigate relationships between linguistic 
entrainment and team social outcomes [34].  

Our work focuses on computational modeling of sequential communication patterns 
in actual team dialogue data collected from a set of live capstone training exercises. 
The hybrid, multidimensional team communication analysis framework shows 
considerable potential to support creating effective team training environments that 
adaptively facilitate teamwork and improve team performance. 

3 Dataset  

We investigate the hybrid team communication framework with transcribed audio logs 
captured from six U.S. Army squads as they each completed a 45-minute live training 
scenario (Fig. 1) [12]. The training scenario included a scripted set of training 
objectives and events (e.g., contacting key local leaders, providing combat casualty 
care) that were designed to elicit team development behaviors among squad members. 
Throughout the mission, squad members were required to develop a baseline of 
advanced situation awareness, identify and report tactical threats, and accomplish 
mission objectives. Each squad consisted of 10 team members wearing individual 
microphones, and each team member assumed a designated role and communicated 
with other key role players to collectively complete the mission.  

The audio logs were transcribed and annotated using a coding scheme of 27 speech 
acts, 18 team development labels, and the speaker’s role by domain experts, where 
speech acts represented the basic purpose of a given utterance, such as requesting 
information or stating an action being taken, team development labels reflected how 
different forms of information were being transferred up and down the chain of 
command in a squad, and speaker roles indicated the role of the team member speaking 
(six speaker roles including one squad leader and two sub-team leaders). While every 
utterance was assigned a speech act label, utterances were only assigned team 
development label when applicable. 

Balancing the granularity of dialogue labels, their impact on the predictive accuracy 
of the models, and the potential utility of their predictions for training, we developed a 
mapping to reduce the number of speech acts from 27 down to 9 distinct labels 
consisting of ACKNOWLEDGEMENT, ACTION REQUEST, ACTION STATEMENT, 
COMMAND, ATTENTION, GREETING, PROVIDE INFORMATION, REQUEST INFORMATION, 
and OTHER statements. Team development communication behavior labels consisted 
of 19 labels (e.g., COMMAND COMING FROM THE SQUAD LEADER, PROVIDE 
INFORMATION UP THE CHAIN OF COMMAND, REQUEST INFORMATION FROM DOWN THE 
CHAIN OF COMMAND), including one extra label (“N/A”) to account for the utterances 
whose team development labels are not applicable. Overall, the dataset included 4,315 
tagged utterances made by the team members from the six squads (Table 1). Frequency 
analyses showed PROVIDE INFORMATION (n = 1,109) was the most prevalent speech act 
in the dataset, followed by COMMAND (n = 805). For team development labels, the most 
frequent labels were N/A (n = 1,978) followed by PROVIDE INFORMATION UP THE CHAIN 
OF COMMAND (n = 550) and COMMAND COMING FROM THE SQUAD LEADER (n = 362).  

Pearson correlation analyses of the dataset found that squads who provided 
information statements (r = .862, p = .027) and issued acknowledgement statements (r 
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= .864, p = .027) more frequently received higher ratings of team performance during 
the training event [35]. Results also showed that ratings of team performance were 
positively correlated with the number of commands that squad leaders issued during 
the training event (r = .848, p = .033). Given the critical role communication plays in 
team effectiveness, being able to accurately classify team communication content in 
terms of speech act and team development labels could provide significant value for 
assessing team performance and developing adaptive training environments for teams.  

Table 1. Example utterances and their speech act (SA) and team development (TD) labels. 

Speaker Example Utterances SA TD 

Team 
Leader Where are we moving? REQUEST 

INFORMATION 

REQUEST 
INFORMATION FROM 
UP THE CHAIN OF 
COMMAND 

Team 
Leader Hey, we’re getting ready to move. PROVIDE 

INFORMATION 

PASS INFORMATION 
DOWN THE CHAIN OF 
COMMAND 

Squad 
Leader 

Six four be advised we're going to make 
contact with Romanov. 

ACTION 
STATEMENT 

PROVIDE 
INFORMATION UP THE 
CHAIN OF COMMAND 

Squad 
Leader 

Hey two alpha, hold right there at those 
trees. COMMAND 

COMMAND COMING 
FROM THE SQUAD 
LEADER 

4 Multidimensional Team Communication Analysis 
Framework 

We first devise linear-chain conditional random fields (CRFs) and deep neural network 
(DNN)-based predictive models that could classify team communication utterances into 
speech acts and team development labels. CRFs are discriminative models for 
structured prediction and sequence modeling [36]. CRFs utilize the probabilistic 
graphical modeling for multivariate data classifications and have been found to be 
particularly effective for modeling interdependencies in predictive features (e.g., pixels 
in an image, words in a sentence) along with the class labels associated with the 
features. While they have proven useful for a variety of tasks, recent work has produced 
significant advances by incorporating CRFs with deep learning techniques for dialogue 
act classification [37] and sentiment analysis [38]. These approaches suggest that 
higher-level features, such as team communication metrics, could be modeled 
accurately with CRFs. 

To effectively model dialogue interactions that have a sequential structure, we 
investigate linear-chain CRFs (Fig. 2). As shown in Equation 1, the posterior 
probability of a sequence of classes (y) given a sequence of input feature vectors (x) 
from time 1 to T is computed using a weighted sum of K feature functions (f) that are 
parameterized with y at times t and t-1, and x at time t, where Z is an instance-specific 
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normalization function [39]. To train the model, we sub-sampled sequences using a 
sliding window of length 100 (i.e., each subsequence with 100 utterances) from each 
team’s communication data, considering both the context to capture from the dialogue 
sequence and potential data sparsity issues. In this way, we create a set of sub-sampled 
sequences equal to the number of utterances in each team’s communication (for the 
sequences shorter than 100, we applied zero padding). The outputs y, which are the 
labels associated with the given input sequence, are generated for both training and 
testing. We use a block-coordinate Frank-Wolfe optimization technique [40] to train 
linear-chain CRFs with the maximum iteration number of 100.     

𝑝(𝑦|𝑥) = !
"($)

∏ exp	{∑ 𝜃&𝑓&(𝑦' , 𝑦'(!, 𝑥'))
&*! }+

'*!                           (1)  

To represent the speaker utterance, we employ a DNN-based contextual, distributed 
representation method using an ELMo language model [23]. In contrast to static, 
distributed representation methods such as GloVe [41], which provide fixed dictionary-
based embeddings, contextual embedding approaches support inducing dynamic 
representations of text by utilizing a language model that takes as input a sequence of 
words. Consequently, ELMo-based approaches might be able to generate more accurate 
representations of utterances included in dialogues. In this work, we use a pre-trained 
ELMo model to generate utterance-level embeddings with 1,024-dimensional vectors 
through a mean pooling of all contextualized word representations. This ELMo model 
was built with stacked bidirectional LSTMs trained on the 1 Billion Word Benchmark, 
approximately 800M tokens of news crawl data from WMT 2011. Since the 1,024-
dimensional vector representation per utterance is prohibitive for models to be 

Fig. 2. A factor graph representation of a linear-chain CRF utilizing ELMo contextual utterance 
embeddings (CRF-ELMo). The gray shaded nodes denote input features (x) that are a 
concatenation of k-dimensional utterance features and 6 one-hot encoded speaker role features 
within a time step (t). The white nodes denote a target variable (y) such as speech act. The black 
shaded boxes indicate factor nodes. 
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effectively trained considering the dataset size examined in this work, we apply 
principal component analysis (PCA) to reduce the 1,024 dimensions down to one of 32, 
64, or 128 dimensions, identifying the optimal reduced dimension through cross-
validation. In summary, this hybrid model, referred to as CRF-ELMo, takes advantage 
of CRF’s strong structure prediction capacity as well as ELMo’s contextual language 
representation capability.  

To identify the best performing CRF-ELMo, we examined two hyperparameters, 
including the regularization parameter from {0.1, 0.5, 1} and the optimizer convergence 
tolerance from {0.01, 0.001}. We used PyStruct [42], a Python-based off-the-shelf CRF 
modeling library, to train the models, while the optimal set of hyperparameters is 
identified through a cross-validation process. 

We also construct bidirectional long short-term memory networks (BLSTMs) [43], 
deep learning-based sequence model baselines, that use the same ELMo contextual 
language embeddings (BLSTM-ELMo). Specifically, we adopt a two-layer BLSTM 
architecture, as we anticipated both forward and backward propagations of hidden 
representations of the input streams would more effectively capture bidirectional, 
sequential patterns in the streams of speaker role changes and utterances and thus more 
accurately model dynamics characterized in team communication behaviors. A 
preliminary analysis conducted with the training set indicated that the stacked BLSTM 
architecture’s speech act classification approach outperformed both single-layer 
standard LSTMs and two-layer standard LSTMs.  

Multi-task neural models offer distinct advantages over single-task variants when 
performing multiple classification tasks [44]. First, multi-task neural models are more 
cost-effective for training than single-task models because they use one network 
architecture with multiple output layers accounting for different classification tasks 
instead of training multiple models. Second, when multiple tasks are correlated, multi-
task models can potentially improve their generalization performance through effective 
regularization, especially when training data is limited. For this reason, we investigate 
both multi-task and single-task versions of BLSTM-ELMos in this work. 

We also explore two fusion methods, early fusion and late fusion, in terms of the 
input feature sets (utterance-based feature set and speaker role-based feature set) for 
optimal BLSTM-ELMo modeling. For early fusion, the PCA-applied, ELMo 
representations of the speaker utterance and the corresponding speaker role passed 
through an embedding layer are concatenated into a vector, which is fed into the 
BLSTM layer. For late fusion, two BLSTMs are created to deal with two input feature 
sets separately, and the two BLSTM outputs are concatenated to perform classifications 
in a softmax layer. In both cases, we explore the same set of reduced dimensions (i.e., 
32, 64, or 128) by PCA for the utterances as done in the CRF-ELMo.  

For the speaker role, we use a trainable embedding layer with the embedding size of 
4 to represent the speaker role in a continuous vector space. We use 32 hidden units for 
the two BLSTM layers with a dropout rate of 0.25 for regularization of the trained 
models, the softmax activation function for the output layers, and the Adam optimizer 
[45]. Similar to CRF-ELMo, we set the maximum input sequence length to 100 and the 
maximum training epochs to 100. Also, we train the models with the same sub-sampled 
sequential dialogue data and adopt early stopping with the patience duration of 10 
epochs using the validation loss computed with 10% of the training set for effective 
training. 
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5 Evaluation 

To evaluate the hybrid team communication framework, we split the team 
communication dataset into two sets: one contained data from 5 squads for performing 
cross-validation and the other data from 1 squad for held-out testing. First, we 
performed 5-fold cross-validation using data from 1 squad as a test set and data from 4 
squads as a training set for each fold. The optimal set of model hyperparameters was 
identified through cross-validation by choosing the one that achieved the highest 
average cross-validation accuracy rate. It should be noted that the held-out test data was 
completely unseen from the cross-validation and its hyperparameter optimization 
process for fair generalization evaluation across models. The majority class baselines 
for the 9 speech acts and 19 team development labels were 25.7% and 45.8%, 
respectively. Table 2 shows the cross-validation results of the speech acts and team 
development labels. CRF-ELMo uses the format of hyperparameters, {optimizer 
regularization parameter, optimizer convergence tolerance, reduced PCA 
dimensions}, and BLSTM-ELMo uses the format of {task modeling type, fusion mode, 
reduced PCA dimensions}.  

Table 2. Averaged cross-validation accuracy rates (%) for CRF-ELMo and BLSTM-ELMo. The 
highest predictive accuracy rates for speech act (SA) and team development labels (TD) per 
modeling technique are marked in bold. 

CRF-ELMo SA TD BLSTM-ELMo SA TD 
{0.1, 0.001, 32} 68.80 58.38 {Multi-task, Early, 32} 61.44 55.79 
{0.1, 0.001, 64} 67.88 56.16 {Multi-task, Early, 64} 62.07 53.88 
{0.1, 0.001, 128} 64.85 52.67 {Multi-task, Early, 128} 61.97 53.43 
{0.1, 0.01, 32} 68.88 58.31 {Multi-task, Late, 32} 60.22 53.96 
{0.1, 0.01, 64} 67.87 56.20 {Multi-task, Late, 64} 60.19 54.51 
{0.1, 0.01, 128} 64.87 52.62 {Multi-task, Late, 128} 59.77 53.22 
{1.0, 0.001, 32} 68.76 58.84 {Single-task, Early, 32} 62.04 55.13 
{1.0, 0.001, 64} 67.45 56.03 {Single-task, Early, 64} 61.16 54.47 
{1.0, 0.001, 128} 65.72 53.36 {Single-task, Early, 128} 61.84 53.93 
{1.0, 0.01, 32} 68.83 58.77 {Single-task, Late, 32} 61.48 52.64 
{1.0, 0.01, 64} 67.45 55.93 {Single-task, Late, 64} 60.53 53.54 
{1.0, 0.01, 128} 65.62 53.29 {Single-task, Late, 128} 61.96 50.98 

Overall, the CRF-ELMo model achieved higher predictive accuracy compared to 
BLSTM-ELMo model based on cross-validation results. Both CRF-ELMo and 
BLSTM-ELMo generally showed higher accuracy when adopting the smallest number 
of language features (32 dimensions), which could be attributed to model overfitting 
issues. For BLSTM-ELMo, the early fusion method often outperformed late fusion. 
Further results showed multi-task learning and single-task learning were competitive, 
with the highest cross-validation results for both the classification tasks being attained 
by multi-task learning.  
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Next, we chose the best performing model hyperparameter configurations for the 
speech act and team development communication behavior predictions for the CRF-
ELMo and BLSTM-ELMo models (marked in bold in Table 2), re-trained the models 
with the hyperparameters using all available training data (i.e., 5 squad training data), 
and evaluated the trained models’ predictive performance using the held-out test set, 
which involved a separate squad’s communication data. Table 3 reports model test 
performance across the re-trained models using the best performing hyperparameter 
configurations identified by cross-validation.  

Table 3. Test accuracy rates (%) for best performing CRF-ELMo and BLSTM-ELMo models. 

 SA TD  SA TD 
CRF-ELMo 69.42 64.92 BLSTM-ELMo 64.61 61.88 

The held-out test set-based evaluation results in Table 3 suggest that the hybrid CRF-
ELMo approach outperformed the BLSTM-ELMo method with sizable differences for 
both the classification tasks, as seen in the cross-validation evaluation (Table 2). It is 
notable that the test accuracy rates are slightly higher than the average cross-validation 
accuracy rates. The five-fold cross-validation accuracy rates for the best performing 
CRF-ELMo models vary from 67.24% to 72.41% across the folds for speech act 
classification (average: 68.88%) and from 56.40% to 64.26% for team development 
classification (average: 58.84%), and these indicate that the held-out test set evaluation 
results are in a similar range. Both CRF-ELMo and BLSTM-ELMo models trained with 
the entire training data (i.e., 5 squad communication data rather than 4 in cross-
validation) could help capture the test set data distribution thereby exhibiting high 
generalization performance.  

We also trained alternating CRF models using a bag-of-words (BoW)-based static 
representation for utterances (CRF-BoW). To train the models, we first transformed all 
of the words that appeared in the training set to lower case and created a dictionary only 
using the top 80% of the most frequently observed words included in the training set, 
while treating the remaining 20% of the least commonly occurring words as unseen (a 
special token). This decision was made to effectively deal with an out-of-vocabulary 
problem (e.g., idiosyncratic words, typographical errors) in the test set. To create a 
BoW representation for each utterance, we created a vector with the dimension of 
1,089, which is the size of the dictionary + 1 (the unseen special token), and set the 
word bit to 1 for the words included in the utterance, while setting the unseen special 
token bit to 1 for any undefined words. A CRF-BoW model is trained using the same 
model architecture used for the best performing CRF-ELMo. This CRF-BoW achieves 
59.37% and 56.54% for speech act classification and team development, respectively, 
for the test set evaluation.  

The results indicate that combining CRF’s sequence modeling capabilities with 
ELMo, which uses a deep learning-based contextual, distributed utterance 
representation learning technique, achieves considerably higher predictive performance 
for both of the team communication modeling tasks. Together, these results suggest the 
following: (1) CRF can serve as a high-fidelity, sequence modeling technique for team 
communication, even with a corpus that is perhaps too small to effectively train 
LSTMs; and (2) the ELMo deep learning-based contextual language model trained with 
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a large, general natural language dataset can effectively extract context and semantics 
from team dialogue and improve the predictive accuracy of the CRF models.  

To build on these results, we next evaluated the team communication framework’s 
domain-transfer capabilities. To facilitate this analysis, we explored how well the 
models trained with the mission data examined in this work (Morg) could classify squad 
communication that was collected during another training mission (Mnew) [12]. Results 
showed that the best performing CRF-ELMo model trained with Morg achieved 67.35% 
predictive accuracy on speech act classification for utterances from Mnew. These results 
show promise for developing scalable NLP-based models that can effectively transfer 
its predictive capacity to data collected from a related training exercise. 

6 Conclusion 

Adaptive team training is critical for effectively developing teamwork skills, 
facilitating team processes, and improving team performance. A key challenge posed 
by creating adaptive training environments is reliably analyzing team communication, 
which is a crucial source of evidence about team interaction. To address this challenge, 
we have introduced a hybrid, multidimensional team communication analysis 
framework incorporating CRF-ELMo, which integrates a high-fidelity, hybrid model 
that utilizes a probabilistic graphical model with a deep learning-based contextual 
language representation model. Evaluations conducted with cross-validation followed 
by a held-out test set showed that CRF-ELMo team communication analysis models 
achieved the highest predictive accuracy with respect to both speech acts and team 
development labels by effectively dealing with noisy team communication data 
captured from a live training exercise, and they significantly outperformed stacked, 
bidirectional long short-term memory network classifiers as well as majority class 
baselines. This hybrid approach was also found to have shown promising domain-
transfer capabilities when applied to a different training event.  

Future research in team communication analytics should investigate other contextual 
embedding approaches, model architectures, and model optimization and regularization 
techniques that can support generalizability and further improve the classification 
accuracy of team communication. Accurately classifying team communication 
utterances would allow team training researchers to identify if teams are pushing and 
pulling information at optimal rates and identify if critical pieces of information are 
being passed to relevant team members. In addition, future research should also conduct 
error analysis on misclassified instances and investigate the sequential patterns of team 
communication to facilitate team cognition and team performance. Finally, it will be 
important for future work to investigate the relationships between team communication 
and team performance and explore dialogue dynamics that can serve as key team 
performance indicators with the ultimate goal of creating adaptive team training 
environments. 
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