

Generating Game Levels for Multiple Distinct Games
with a Common Latent Space

Vikram Kumaran, Bradford W. Mott, James C. Lester
Department of Computer Science, North Carolina State University

{vkumara, bwmott, lester}@ncsu.edu

Abstract
Generative adversarial networks (GANs) are showing
significant promise for procedural content generation (PCG)
of game levels. GAN models generate game levels by
mapping a low dimensional latent space to game levels in the
game space. An intriguing challenge in GAN-based PCG is
enabling GANs to produce game levels for multiple distinct
games with similar gameplay characteristics using a common
underlying low-dimensional representation. In this paper, we
present a method for training a novel GAN-based PCG
architecture that generates levels in multiple distinct games,
starting from a common gameplay action sequence. We
evaluate the solvability of the generated games using an
automated playing agent and show how the generated game
levels are separate representations of the same gameplay by
quantifying the similarity between the solution action
sequences for the game levels. By probing the common latent
space, we show how our approach provides control over the
levels generated in distinct games for the presence of desired
gameplay patterns in the generated game levels. Results also
demonstrate that the GAN-based PCG approach creates
novel game levels in multiple distinct games, as indicated by
the distance between the action sequences required to solve
the game levels.

Introduction
Procedural content generation (PCG) holds significant
promise for algorithmically creating game content. PCG can
be utilized to generate game rules, game levels, and textures
for a game’s graphical elements. Early work in PCG used
search-based and solver-based techniques to generate
content, but more recently, machine learning techniques
such as deep neural networks have been used to generate
game content (Shaker, Togelius, and Nelson 2016). This
approach is referred to as Procedural Content Generation via
Machine Learning (PCGML) (Summerville et al. 2018;
Justesen et al. 2019; Guzdial et al. 2018).

Copyright © 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

A variety of deep neural network architectures have been
used in PCGML to model and generate game content. Game
levels in some genres of games such as platformers can be
expressed as a sequence of obstacles that players experience
as they progress through the game, inspiring the use of
Recurrent Neural Networks (RNN) and Long Short-Term
Memory (LSTM) networks, which can encode sequential
patterns, to generate new game levels (Summerville et al.
2016; Summerville and Mateas 2016). Generative
Adversarial Networks (GAN) are another type of deep
neural network that have also gained popularity as a
promising content generation technique (Torrado et al.
2019; Volz et al. 2018), driven by the fact that GANs can be
trained in an unsupervised fashion given sufficient training
examples. However, deep neural networks require a large
number of training examples for a model to accurately
capture patterns. GANs have sometimes been used to
address this requirement by taking a limited set of existing
examples to bootstrap a game level training corpus and
create more training examples by using their ability to
reproduce patterns inherent in training examples when used
as a generator (Torrado et al. 2019; Park et al. 2019).
However, this approach could lead to overfitting as GANs
are learning from a limited set of examples.

A key feature of GANs is the ability to capture game-level
patterns in a low dimensional latent representation. Can a
single common latent space capture the patterns of game
levels from multiple games? In other words, are there
underlying shared patterns belonging to multiple distinct
games with similar gameplay? We answer this question in
the affirmative and explore the implications of the common
latent space.

We believe that there is an underlying commonality in
game-levels across multiple games despite apparent
variability. By capturing the commonality in a novel GAN

based model, we create levels in multiple games with similar
gameplay from a single common seed. In our work, we
use a novel technique to build up the training corpus using
an approach similar to the progressive generation of game
levels using action timelines (Shaker et al. 2015). Using this
technique that starts from a player’s gameplay, we are able
to generate sets of game levels in multiple games with
similar gameplay and build a sizable training corpus for our
GANs. We investigate the implications of a single latent
space that captures the combined patterns of multiple
distinct games by exploring the relationship between control
over the generated levels and the need to build novel
solvable game levels. We propose metrics that quantify the
novelty of the levels generated by our generator.

Related Work
Over the years there have been many approaches to
capturing a common representation for multiple games.
Bentley and Osborn (2019) labeled affordances of sprite
patterns in multiple games from the players’ point of view,
to show commonality between games. Snodgrass et al.
(Snodgrass et al. 2016) captured statistical regularities in
different platformer game levels. They build the generator
using multi-dimensional Markov chains to represent the
transition states. Guzdial and Riedl (Guzdial and Riedl
2016; Guzdial and Riedl 2018a; Guzdial and Riedl 2018b;
Guzdial, Liao, and Riedl 2018) demonstrate different
techniques to combine game concepts and levels to form
novel levels, including conceptual expansion, combinatorial
creativity and co-creation. Sarkar et al. (Sarkar and Cooper
2018; Sarkar, Yang, and Cooper 2019) have used deep
learning models like LSTMs and variational autoencoders
to capture the commonality of distinct games in a single
latent representation. However, they generate game level
snippets instead of playable game levels. In our work, we
use the ability of Generative Adversarial Nets (GAN) to
capture a low dimensional common representation of game
levels from multiple games.

 GANs first introduced by Goodfellow et al. (2014), are a
way to learn generative models that reproduce examples
from a training set by an adversarial process between a
generator and a discriminator, both modeled by deep neural
networks. The training process produces a generator that can
take a random sample from low dimensional latent space
and generate an example that is indistinguishable from the
training set. This ability to generate more examples given a
training set has been used in the PCG community to
bootstrap training sets. Volz et al. (Volz et al. 2018) trained
a GAN generator and explored the low dimensional latent
space using an evolutionary search algorithm to find novel
levels. Giacomello et al. (Giacomello, Lanzi, and Loiacono
2018; Giacomello, Lanzi, and Loiacono 2019) followed a

similar approach of latent space exploration to generate
novel DOOM levels. GANs, by definition, are trained to
mimic training examples. We will show how variety in the
training set impacts the novelty of the game levels
generated.

 One approach to increasing the training set size is to use
GANs themselves to generate new training data. Torrado et
al. (Torrado et al. 2019) have used a conditional embedding
self-attention GAN (CESAGAN) to capture long distance
dependencies in game levels. After each epoch of training,
the generated playable levels are added to the training
corpus to increase the number of examples. Park et al. (Park
et al. 2019) used GANs to capture the patterns from a small
set of examples to generate a larger batch of solvable
training examples using multi-stage generation in the
context of educational games. GANs capture what they see
in the training examples, so working with a small training
set might restrict the variety of game levels expressed by the
generator. In this work, we propose a novel method to
increase the training set to overcome this problem, which
will be discussed in the next section.

In PCG as game levels are generated procedurally one
needs fitness or evaluation metrics to determine the merit of
each approach and identify desirable levels (Shaker,
Togelius, and Nelson 2016; Shaker, Smith, and Yannakakis
2016). To simulate human evaluation, automated agents are
used to play the games (Silva et al. 2018; Volz et al. 2018).
Volz et al. evaluated level solvability using an agent to play
the level, and they quantified difficulty based on the
configuration of tiles in the level generated. We also use
agents to play our levels to determine if a level is solvable.
Novelty is typically defined as a distance measure between
nearest neighbors (Lehman and Stanley 2011). In our work,
we consider a level to be novel if it requires a unique
sequence of actions to solve. We will define novelty based
on distance between gameplay solutions as detailed in the
later sections.

It is desirable to generate a solvable game level that is
novel. It is also desirable that the generator can be controlled
to generate levels that are interesting to play. Snodgrass and
Ontañón (2016), in their work on PCG using multi-
dimensional Markov chains, introduced constraints on the
game elements in the levels generated, such as the existence
of a specific number of difficult tile combinations. Khalifa
et al. (Khalifa et al. 2019) evaluated game levels based on
how an agent plays the game and the type of actions the
agent performs like high jumps, long jumps, stomp kills, etc.
Zhu et al. (Zhu, Wang, and Zyda 2018) evaluated the
similarity between games based on a game event analysis of
human’s gameplay. In our generator, we also consider
gameplay to evaluate our generated models. Snodgrass et al.
(Snodgrass, Summerville, and Ontañón 2017) defined a
plagiarism metric to see how much of the training levels was
captured in the generated levels. We use a similar metric

based on gameplay to evaluate the amount of variety
captured from training to generated levels.

Approach
In this research we trained a GAN to generate game levels
with the same gameplay in four distinct games, from a single
random seed. We selected games that have similar game
physics and game actions. In this section, we describe the
game selection rationale, training set creation, and the GAN
architecture.

Games and Level Representation
The General Video Game Artificial Intelligence (GVGAI)
framework and Video Game Description Language (VGDL)
together provide a generic solution that can be used to
represent and realize common 2D video games (Perez-
Liebana et al. 2019). VGDL is a text-based description
language that can be used to represent two-dimensional
arcade games with grid-level physics. The language allows
for the definition of individual sprites with custom
properties including directional speed, interactions with
other sprites, movement, scoring and determining
termination conditions. The GVGAI framework provides a
large set of predefined games in VGDL. The framework also
provides agents that can play the games based on various
heuristics. In this work we use both the framework to
represent the games and the agents to test solvability of the
generated game levels.

 The set of four games selected from GVGAI
(Boulderdash, Link, Zelda and Roguelike) follow grid
physics and have similar actions available to the player.
Interaction of the player’s avatar with dynamic elements in
the games like the monsters, moving tanks, and falling
boulders, create distinction between the games. Falling
boulders, which obey gravity is unique to Boulderdash. In
Roguelike and Link there are solid walls with locked doors
or breakable walls that require the player to first pick up a
key or pickaxe to pass. In Zelda the layout of walls creates
narrow pathways for the avatar to negotiate. These
differences result in a variety of sprite patterns. One cannot
just replace sprites in the level of one game with sprites from
another game to generate levels in the other games. The
ability of enemies in the games are also unique.

Training Corpus Generation
As described above, the training corpus is a list of samples
where each sample is a set of four game levels from
Boulderdash, Link, Zelda, and Roguelike. The games were
selected to have similar gameplay. By similar gameplay, we
imply that following an equivalent action sequence in all the
games will typically complete the level successfully. The
training sets are created using an approach comparable to

Shaker et al. (Shaker et al. 2015), who used abstract game
timelines (sequence of actions in a game along with time
deltas between actions) to generate game levels. The
objective is to place obstacles that complement the actions
at the right time and location such that the player action in
the game timeline is necessary to move forward in a game.

As outlined in the algorithm (Algorithm 1), a training
example creation starts with a set of grid points on an empty
grid. The starting point is usually chosen on the top left
quadrant and the goal point is chosen on the bottom right. A
sequence of actions is selected that will take the player’s
avatar from one grid point to the next. This action sequence
(e.g., jump, break a wall, pick a sword) is carried out through
the grid as sprites like walls and locks are placed in the way
to match the corresponding action. The action sequences are
varied by changing the order of actions or permuting the
combinations of actions randomly. Multiple combinations
of actions that take the player’s avatar from the start to the
goal state are considered. The same action sequence is used
in all the games considered, but the specific game’s
dynamics requires the placing of different obstacles to
match the action. For example, in Boulderdash one has to
avoid falling boulders and in Roguelike one needs to first
pick up a key before passing a locked gate. The approach is
generic and can be used to generate levels for multiple
games starting from a common action sequence and path
through the grid.

Branched Generative Adversarial Network Model
We used deep convolutional GANs to model game levels in
multiple games by using an innovative branched generator
matched with individual game specific discriminators.

Algorithm 1: Training level generation algorithm.

A GAN typically consists of two types of deep networks: a
single generator and a single discriminator. In our novel
architecture we have constructed a generator that starts from
a random seed like a typical GAN but branches into four
different outputs as seen in Figure 2. Each of the outputs
corresponds to game-levels in four different games in the
training set. We have as many discriminators as there are
branches in the generator. Each discriminator is tied to a
single game and distinguishes between generated examples
and training examples. The intuition is that the latent space
and unbranched layers capture the commonality across the
games while the branched layers capture the differences.
Independent GANs, would not learn any common patterns
as the only common element, the random input from the
latent space, cannot be trained.

Each training sample is a multi-channel binary matrix,
with each channel representing one type of sprite in the
game and each grid point being a binary representation of
the presence of the corresponding sprite at that grid point.
The discriminators train independent of one another. Binary
cross entropy loss from the discriminators is added to
conditional loss from the generator. The generator loss is the
sum of the binary cross entropy between the training sample
and the generated image along with conditional loss if the
number of sprites does not match the training level. The
generators use batch normalization between convolution
layers and LeakyReLU activation along with a final sigmoid
activation to generate game level output. Each of the
discriminators use a dropout of 30% to reduce overfitting.

The generator generates four grid physics games
(Boulderdash, Link, Zelda and Roguelike) of size 16x16
from an initial input of 128 normally distributed random
numbers. The training sample and generated game levels are
represented as a tensor with nine channels, one each for each
type of sprite (avatar, exit, floor, gold/health, key, lock,
monster, wall and weapon). Unused channels are set to zero.
The GANs were trained on a single GPU using 5000
examples in the training set. The training epochs ranged
from 600 to 1200 with a batch size of 64.

Evaluation
We use multiple evaluation metrics to quantify the quality
of the generated levels. We check for solvability, the
similarity of the gameplay between the different games, and
novelty. Path similarity quantifies gameplay parity across
games, while novelty measures variety in gameplay within
levels of a single game. The details of the evaluation method
are elaborated in this section.

Solvability
Solvability is determined using automated agents available
in the GVGAI framework. If a level can be solved at least

Figure 2: The GAN architecture consists of a branched generator

and multiple parallel discriminators one for each game.

once in 5 attempts by the automated agent, we consider the
level to be solvable.

Ideal Game Path Similarity
A shortest path is calculated from the avatar’s initial position
to the goal position with the stops along the way to pick up
the necessary items to complete the level. The shortest path
does not measure solvability because it does not take into
account the dynamic aspects of the game. However, the
shortest path is used to evaluate other metrics discussed in
the subsequent sections. We determine an ideal path for the
avatar in the level based on Dijkstra’s shortest path
algorithm (Dijkstra et al. 1959).

A path similarity measure is calculated between the
shortest paths game levels of distinct games generated
together. This path similarity distance is used to verify that
the GAN model has captured the similarity between the
games. The path similarity distance is the Manhattan
distance between the grid locations in the path. The formula
of the distance calculation is given by the formula,

𝑑 =	 $ |𝑥! − 𝑥"| +	|𝑦! − 𝑦"|	
	

$%&'()%*	$(+,$

	

Path similarity distance d is given as a sum over all the

steps in the solution, where (xb, yb) and (xz, yz) correspond to
the grid position of the avatar in two distinct games,
respectively. The shorter path is extended using copies of
the goal location to match path lengths . For each
generated set of games, the average path distance is
calculated, between all pairwise combinations of games.
Path similarity distance distribution across the sets of
generated levels is compared to the path similarity distance
distribution in the training set. If the GAN captures the
gameplay similarity between distinct games, the distribution
of path similarity distance should be the same between the
training set and generated sets.

Figure 3: Two set of four games starting on the left Boulderdash,

Link, Zelda and Roguelike from the training set.

Novelty
The path similarity distance discussed in the earlier section
was about similarity between distinct games, novelty is a
measure of similarity within a game. Novelty is a binary
relational property between two game levels of the same
game. A level is novel with respect to another if the path
taken by the avatar, represented by the sequence of actions
is different. Thus, if a level requires a completely new
sequence of actions to complete, then it would be considered
novel. To evaluate novelty, we use the Levenshtein distance
(Levenshtein 1966) between two ideal path action
sequences. If the Levenshtein distance is large between two
levels of a game, then we can claim that the gameplay will
be different to a player. For example, if the solution action
sequence for two Zelda levels is (right, right, pick key, up,
right, right) and (right, up, pick key, up, right), the distance
would be two as the number of edits to go from one
sequence to the other is two.

Results and Discussion
Figure 3 shows two sets of training game levels and Figure 4
shows four sets of generated game levels from the GAN
generator. It is interesting to notice that the GAN learns to
place boulders in Boulderdash above the diamonds. One can
also see that in Zelda, the generator sometimes confines
monsters behind walls. To get a glimpse into what the
generator is really learning, we take two random latent
vectors and their corresponding levels for one game. We
then generate a third level from the vector sum of the first
two latent vectors. Figure 5 shows an example from
Boulderdash. We can see that the vector sum captures
monster locations from the first level and some of the
diamond locations from the second level into the third level.
As expected, the GAN is encoding relative positional
patterns of sprites from the training set into the latent space
and is encoding the relative positions of sprites in the four
different games into a single common latent representation.

We see from the examples in Figure 4 that the layout of
sprites for monsters, keys, gold and health are similar across
game levels in the different games. This correspondence is
seen across all generated levels.

Figure 4: Four sets of generated levels using the GAN generator

starting on the left Boulderdash, Link, Zelda, and Roguelike.

To validate and quantify the similarity of gameplay across
games for generated game-level sets, we plot the average
similarity distance between the ideal path for the avatar to
reach the end state from the start state, picking up the
necessary items and avoiding monsters. Figure 6 shows how
the average path similarity distance is distributed in the
baseline, training set and the generated set. The baseline
represents sets of four game levels chosen randomly without
considering gameplay similarity. The distance between the
distributions can be quantified using the Wasserstein
distribution distance. One can see that the generated sets of
four levels have path similarity distribution closer
(Wasserstein distance 161) to the training sets and further
away from the baseline (Wasserstein distance 283). One
could say the GAN has captured aspects of gameplay
similarity across the four games.

Training sets are generated explicitly with the same action
sequence for all four game levels resulting in similar
gameplay for all four levels. The training levels have the
gameplay flowing from the top left to the bottom right and
one can see this captured by the GAN. GAN generator loss
for the set of four games are averaged together in the
gradient calculation with no other explicit constraint to
match gameplay across games. The indirect constraint
through loss results in some increase in gameplay variation
in the generated levels as seen in Figure 6 as expected.

Figure 5: The third Boulderdash level generated from the vector

sum of the latent seed vectors of the first two.

Figure 6: Distribution of average path similarity distance between

distinct games in a training set and generated set.

We evaluate solvability of the generated levels by taking
a set (50 levels for each game) of GAN generated levels and
running an automated agent provided by the GVGAI
framework. The agent is run up to five times to see if the
level can be solved in allotted time of 2000 ticks. Figure 7
shows the relative solvability of the four different games.
Boulderdash has a higher solvability (70%) over all the
other games because it does not have any dependency
between actions. For example, the need to pick up a key
before being able to open a lock which is present in the other
games. The reason Zelda has the lowest solvability among
the generated levels (40%) might be due the need for the
GAN to reproduce narrow paths between walls to go from
the starting point to the goal and the need to have access to
a key to finish the level.

The next evaluation metric we consider is novelty.
Figure 8 shows how novelty of the generated levels
compares with the novelty in the training levels of each
game. We take 100 training and 100 generated levels for
each game and calculate the distribution of pairwise
Levenshtein distance between the ideal action sequence for
the levels in the two sets. Distance is calculated between
every level for a game with every other level in that set for
that game. One can see that the variety or relative novelty of
levels in the training set is captured by the GAN as the
generated set has a similar distribution of values for the
Levenshtein distance. By definition GANs are trying to
mimic samples in the training sets, having a distribution of
levels that are just as varied in the generated set as the
original set implies that the generator has captured most of
the complexity in the training set in its model.

Figure 7: Generated levels solvable by an agent.

Figure 8: Pairwise Levenshtein distance distribution as a measure

of novelty in generated levels vs training levels.

Conclusion
GAN-based PCG often focuses on generating levels in
individual games. There is an underlying commonality in
how many games operate despite apparent variability on
initial inspection, and we have shown that one can build a
game-independent representation to capture that
commonality of multiple games. Commonalities captured in
a low dimensional latent space can then be explored to
generate new interesting game levels, and possibly, new
games. In this work we trained a novel branched GAN that
can take a single random seed vector to generate parallel
levels in four distinct games with similar gameplay, while
capturing the variability seen in the training levels.

We have presented a novel approach to building the
training corpus starting from a prescribed gameplay action
sequence. By using gameplay, one is starting from a player’s
experience of the game. Building the training corpus based
on the gameplay action sequence also guarantees that the
paired levels generated have similar gameplay
characteristics. We are currently using a simple rule-based
algorithm but using answer-set programming techniques
similar to the work done by Smith and Mateas (2011) could
make this process more extensible.

A promising direction for future work is to formalize
specific game characteristics of a broad selection of games
that can be represented in a single common representation.
It will also be instructive to determine if there are classes of
games that can be grouped based on specific aspects of
gameplay and game rules. Further, exploring the possibility
of capturing the temporal elements of games in the latent
space may lead to more powerful PCG frameworks for
broad classes of games.

References
Bentley, G. R., and Osborn, J. C. 2019. The videogame affordances
corpus. In Proceedings of AIIDE Workshop on Experimental AI in
Games.
Dijkstra, E. W. 1959. A note on two problems in connexion with
graphs. Numerische Mathematik 1(1):269–271.
Giacomello, E.; Lanzi, P. L.; and Loiacono, D. 2018. Doom level
generation using generative adversarial networks. In 2018 IEEE
Games, Entertainment, Media Conference (GEM), 316–323.
IEEE.
Giacomello, E.; Lanzi, P. L.; and Loiacono, D. 2019. Searching the
latent space of a generative adversarial network to generate Doom
levels. In 2019 IEEE Conference on Games (CoG), 1–8. IEEE.
Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-
Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y. 2014.
Generative adversarial nets. In Advances in Neural Information
Processing Systems, 2672–2680.
Guzdial, M., and Riedl, M. 2016. Learning to blend computer game
levels. In Proceedings of the Seventh International Conference on
Computational Creativity.
Guzdial, M., and Riedl, M. 2018a. Automated game design via
conceptual expansion. In Proceedings of Fourteenth Artificial
Intelligence and Interactive Digital Entertainment Conference.
Guzdial, M. J., and Riedl, M. O. 2018b. Combinatorial creativity
for procedural content generation via machine learning. In
Workshops at the Thirty-Second AAAI Conference on Artificial
Intelligence.
Guzdial, M.; Reno, J.; Chen, J.; Smith, G.; and Riedl, M. 2018.
Explainable PCGML via game design patterns. In Proceedings of
AIIDE Workshop on Experimental AI in Games.
Guzdial, M.; Liao, N.; and Riedl, M. 2018. Co-creative level
design via machine learning. In Proceedings of AIIDE Workshop
on Experimental AI in Games.
Justesen, N.; Bontrager, P.; Togelius, J.; and Risi, S. 2019. Deep
learning for video game playing. IEEE Transactions on Games
12(1):1-20.
Khalifa, A.; Green, M. C.; Barros, G.; and Togelius, J. 2019.
Intentional computational level design. In Proceedings of The
Genetic and Evolutionary Computation Conference, 796–803.
Lehman, J., and Stanley, K. O. 2011. Abandoning objectives:
Evolution through the search for novelty alone. Evolutionary
computation 19(2):189–223.
Levenshtein, V. I. 1966. Binary codes capable of correcting
deletions, insertions, and reversals. In Soviet Physics Doklady,
volume 10, 707–710.
Park, K.; Mott, B. W.; Min, W.; Boyer, K. E.; Wiebe, E. N.; and
Lester, J. C. 2019. Generating educational game levels with
multistep deep convolutional generative adversarial networks. In
2019 IEEE Conference on Games (CoG), 1–8. IEEE.
Perez-Liebana, D.; Liu, J.; Khalifa, A.; Gaina, R. D.; Togelius, J.;
and Lucas, S. M. 2019. General video game AI: A multitrack
framework for evaluating agents, games, and content generation
algorithms. IEEE Transactions on Games 11(3):195–214.
Sarkar, A., and Cooper, S. 2018. Blending levels from different
games using LSTMs. In Proceedings of AIIDE Workshop on
Experimental AI in Games.

Sarkar, A.; Yang, Z.; and Cooper, S. 2019. Controllable level
blending between games using variational autoencoders. In
Proceedings of AIIDE Workshop on Experimental AI in Games.
Shaker, M.; Shaker, N.; Togelius, J.; and Abou-Zleikha, M. 2015.
A progressive approach to content generation. In European
Conference on the Applications of Evolutionary Computation,
381–393. Springer.
Shaker, N.; Smith, G.; and Yannakakis, G. N. 2016. Evaluating
content generators. In Procedural Content Generation in Games.
Springer. 215–224.
Shaker, N.; Togelius, J.; and Nelson, M. J. 2016. Procedural
Content Generation in Games. Springer.
Silva, F. D. M.; Borovikov, I.; Kolen, J.; Aghdaie, N.; and Zaman,
K. 2018. Exploring gameplay with AI agents. In Proceedings of
Fourteenth Artificial Intelligence and Interactive Digital
Entertainment Conference.
Smith, A. M., and Mateas, M. 2011. Answer set programming for
procedural content generation: A design space approach. IEEE
Transactions on Computational Intelligence and AI in Games
3(3):187–200.
Snodgrass, S., and Ontañón, S. 2016a. An approach to domain
transfer in procedural content generation of two- dimensional
videogame levels. In Proceedings of Twelfth Artificial Intelligence
and Interactive Digital Entertainment Conference.
Snodgrass, S., and Ontañón, S. 2016b. Controllable procedural
content generation via constrained multi-dimensional Markov
chain sampling. In IJCAI, 780–786.
Snodgrass, S.; Summerville, A.; and Ontañón, S. 2017. Studying
the effects of training data on machine learning-based procedural
content generation. In Proceedings of Thirteenth Artificial
Intelligence and Interactive Digital Entertainment Conference.
Summerville, A., and Mateas, M. 2016. Super Mario as a string:
Platformer level generation via LSTMs. In Proceedings of the
First International Joint Conference of DiGRA and FDG.
Summerville, A.; Guzdial, M.; Mateas, M.; and Riedl, M. O. 2016.
Learning player tailored content from observation: Platformer
level generation from video traces using LSTMs. In Proceedings
of Twelfth Artificial Intelligence and Interactive Digital
Entertainment Conference.
Summerville, A.; Snodgrass, S.; Guzdial, M.; Holmgård, C.;
Hoover, A. K.; Isaksen, A.; Nealen, A.; and Togelius, J. 2018.
Procedural content generation via machine learning (PCGML).
IEEE Transactions on Games 10(3):257–270.
Torrado, R. R.; Khalifa, A.; Green, M. C.; Justesen, N.; Risi, S.;
and Togelius, J. 2019. Bootstrapping conditional GANs for video
game level generation. arXiv preprint arXiv:1910.01603.
Volz, V.; Schrum, J.; Liu, J.; Lucas, S. M.; Smith, A.; and Risi, S.
2018. Evolving Mario levels in the latent space of a deep
convolutional generative adversarial network. In Proceedings of
the Genetic and Evolutionary Computation Conference, 221–228.
ACM
Zhu, T.; Wang, B.; and Zyda, M. 2018. Exploring the similarity
between game events for game level analysis and generation. In
Proceedings of the 13th International Conference on the
Foundations of Digital Games, 1–7.

