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Abstract 
Generative adversarial networks (GANs) are showing 
significant promise for procedural content generation (PCG) 
of game levels. GAN models generate game levels by 
mapping a low dimensional latent space to game levels in the 
game space. An intriguing challenge in GAN-based PCG is 
enabling GANs to produce game levels for multiple distinct 
games with similar gameplay characteristics using a common 
underlying low-dimensional representation. In this paper, we 
present a method for training a novel GAN-based PCG 
architecture that generates levels in multiple distinct games, 
starting from a common gameplay action sequence. We 
evaluate the solvability of the generated games using an 
automated playing agent and show how the generated game 
levels are separate representations of the same gameplay by 
quantifying the similarity between the solution action 
sequences for the game levels. By probing the common latent 
space, we show how our approach provides control over the 
levels generated in distinct games for the presence of desired 
gameplay patterns in the generated game levels. Results also 
demonstrate that the GAN-based PCG approach creates 
novel game levels in multiple distinct games, as indicated by 
the distance between the action sequences required to solve 
the game levels.  

Introduction   
Procedural content generation (PCG) holds significant 
promise for algorithmically creating game content. PCG can 
be utilized to generate game rules, game levels, and textures 
for a game’s graphical elements. Early work in PCG used 
search-based and solver-based techniques to generate 
content, but more recently, machine learning techniques 
such as deep neural networks have been used to generate 
game content (Shaker, Togelius, and Nelson 2016). This 
approach is referred to as Procedural Content Generation via 
Machine Learning (PCGML) (Summerville et al. 2018; 
Justesen et al. 2019; Guzdial et al. 2018).  
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A variety of deep neural network architectures have been 
used in PCGML to model and generate game content. Game 
levels in some genres of games such as platformers can be 
expressed as a sequence of obstacles that players experience 
as they progress through the game, inspiring the use of 
Recurrent Neural Networks (RNN) and Long Short-Term 
Memory (LSTM) networks, which can encode sequential 
patterns, to generate new game levels (Summerville et al. 
2016; Summerville and Mateas 2016). Generative 
Adversarial Networks (GAN) are another type of deep 
neural network that have also gained popularity as a 
promising content generation technique (Torrado et al. 
2019; Volz et al. 2018), driven by the fact that GANs can be 
trained in an unsupervised fashion given sufficient training 
examples. However, deep neural networks require a large 
number of training examples for a model to accurately 
capture patterns. GANs have sometimes been used to 
address      this requirement by taking a limited set of existing 
examples to bootstrap a game level training corpus and 
create more training examples by using their ability to 
reproduce patterns inherent in training examples when used 
as a generator (Torrado et al. 2019; Park et al. 2019).  
However, this approach could lead to overfitting as GANs 
are learning from a limited set of examples. 

A key feature of GANs is the ability to capture game-level 
patterns in a low dimensional latent representation. Can a 
single common latent space capture the patterns of game 
levels from multiple games?      In other words, are there 
underlying shared patterns belonging to multiple distinct 
games with similar gameplay? We answer this question in 
the affirmative and explore the implications of the common 
latent space. 

We believe that there is an underlying commonality in 
game-levels across multiple games despite apparent 
variability. By capturing the commonality in a novel GAN 

 



based model, we create levels in multiple games with similar 
gameplay from a single common seed.      In our work, we 
use a novel technique to build up the training corpus using 
an approach similar to the progressive generation of game 
levels using action timelines (Shaker et al. 2015). Using this 
technique that starts from a player’s gameplay, we are able 
to generate sets of game levels in multiple games with 
similar gameplay and build a sizable training corpus for our 
GANs. We investigate the implications of a single latent 
space that captures the combined patterns of multiple 
distinct games by exploring the relationship between control 
over the generated levels and the need to build novel 
solvable game levels. We propose metrics that quantify the 
novelty of the levels generated by our generator.  

Related Work 
Over the years there have been many approaches to 
capturing a common representation for multiple games. 
Bentley and Osborn (2019) labeled affordances of sprite 
patterns in multiple games from the players’ point of view, 
to show commonality between games. Snodgrass et al. 
(Snodgrass et al. 2016) captured statistical regularities in 
different platformer game levels. They build the generator 
using multi-dimensional Markov chains to represent the 
transition states. Guzdial and Riedl (Guzdial and Riedl 
2016; Guzdial and Riedl 2018a; Guzdial and Riedl 2018b; 
Guzdial, Liao, and Riedl 2018) demonstrate different 
techniques to combine game concepts and levels to form 
novel levels, including conceptual expansion, combinatorial 
creativity and co-creation. Sarkar et al. (Sarkar and Cooper 
2018; Sarkar, Yang, and Cooper 2019) have used deep 
learning models like LSTMs and variational autoencoders 
to capture the commonality of distinct games in a single 
latent representation. However, they generate game level 
snippets      instead of playable game levels. In our work, we 
use the ability of Generative Adversarial Nets (GAN) to 
capture a low dimensional common representation of game 
levels from multiple games.  

 GANs first introduced by Goodfellow et al. (2014), are a 
way to learn generative models that reproduce examples 
from a training set by an adversarial process between a 
generator and a discriminator, both modeled by deep neural 
networks. The training process produces a generator that can 
take a random sample from low dimensional latent space 
and generate an example that is indistinguishable from the 
training set. This ability to generate more examples given a 
training set has been used in the PCG community to 
bootstrap training sets. Volz et al. (Volz et al. 2018) trained 
a GAN generator and explored the low dimensional latent 
space using an evolutionary search algorithm to find novel 
levels. Giacomello et al. (Giacomello, Lanzi, and Loiacono 
2018; Giacomello, Lanzi, and Loiacono 2019) followed a 

similar approach of latent space exploration to generate 
novel DOOM levels. GANs, by definition, are trained to 
mimic training examples. We will show how variety in the 
training set impacts the novelty of the game levels 
generated. 

 One approach to increasing the training set size is to use 
GANs themselves to generate new training data. Torrado et 
al. (Torrado et al. 2019) have used a conditional embedding 
self-attention GAN (CESAGAN) to capture long distance 
dependencies in game levels. After each epoch of training, 
the generated playable levels are added to the training 
corpus to increase the number of examples. Park et al. (Park 
et al. 2019) used GANs to capture the patterns from a small 
set of examples to generate a larger batch of solvable 
training examples using multi-stage generation in the 
context of educational games. GANs capture what they see 
in the training examples, so working with a small training 
set might restrict the variety of game levels expressed by the 
generator. In this work, we propose a novel method to 
increase the training set to overcome this problem, which 
will be discussed in the next section.  

In PCG as game levels are generated procedurally one 
needs fitness or evaluation metrics to determine the merit of 
each approach and identify desirable levels (Shaker, 
Togelius, and Nelson 2016; Shaker, Smith, and Yannakakis 
2016). To simulate human evaluation, automated agents are 
used to play the games (Silva et al. 2018; Volz et al. 2018). 
Volz et al. evaluated level solvability using an agent to play 
the level, and they quantified difficulty based on the 
configuration of tiles in the level generated. We also use 
agents to play our levels to determine if a level is solvable. 
Novelty is typically defined as a distance measure between 
nearest neighbors (Lehman and Stanley 2011). In our work, 
we consider a level to be novel if it requires a unique 
sequence of actions to solve. We will define novelty based 
on distance between gameplay solutions as detailed in the 
later sections. 

It is desirable to generate a solvable game level that is 
novel. It is also desirable that the generator can be controlled 
to generate levels that are interesting to play. Snodgrass and 
Ontañón (2016), in their work on PCG using multi-
dimensional Markov chains, introduced constraints on the 
game elements in the levels generated, such as the existence 
of a specific number of difficult tile combinations. Khalifa 
et al. (Khalifa et al. 2019) evaluated game levels based on 
how an agent plays the game and the type of actions the 
agent performs like high jumps, long jumps, stomp kills, etc. 
Zhu et al. (Zhu, Wang, and Zyda 2018) evaluated the 
similarity between games based on a game event analysis of 
human’s gameplay. In our generator, we also consider 
gameplay to evaluate our generated models. Snodgrass et al. 
(Snodgrass, Summerville, and Ontañón 2017) defined a 
plagiarism metric to see how much of the training levels was 
captured in the generated levels. We use a similar metric 



based on gameplay to evaluate the amount of variety 
captured from training to generated levels. 

Approach 
In this research we trained a GAN to generate game levels 
with the same gameplay in four distinct games, from a single 
random seed. We selected games that have similar game 
physics and game actions. In this section, we describe the 
game selection rationale, training set creation, and the GAN 
architecture. 

Games and Level Representation 
The General Video Game Artificial Intelligence (GVGAI) 
framework and Video Game Description Language (VGDL) 
together provide a generic solution that can be used to 
represent and realize common 2D video games (Perez-
Liebana et al. 2019). VGDL is a text-based description 
language that can be used to represent two-dimensional 
arcade games with grid-level physics. The language allows 
for the definition of individual sprites with custom 
properties including directional speed, interactions with 
other sprites, movement, scoring and determining 
termination conditions. The GVGAI framework provides a 
large set of predefined games in VGDL. The framework also 
provides agents that can play the games based on various 
heuristics. In this work we use both the framework to 
represent the games and the agents to test solvability of the 
generated game levels. 

 The set of four games selected from GVGAI 
(Boulderdash, Link, Zelda and Roguelike) follow grid 
physics and have similar actions available to the player. 
Interaction of the player’s avatar with dynamic elements in 
the games like the monsters, moving tanks, and falling 
boulders, create distinction between the games. Falling 
boulders, which obey gravity is unique to Boulderdash. In 
Roguelike and Link there are solid walls with locked doors 
or breakable walls that require the player to first pick up a 
key or pickaxe to pass. In Zelda the layout of walls creates 
narrow pathways for the avatar to negotiate. These 
differences result in a variety of sprite patterns. One cannot 
just replace sprites in the level of one game with sprites from 
another game to generate levels in the other games. The 
ability of enemies in the games are also unique. 

Training Corpus Generation 
As described above, the training corpus is a list of samples 
where each sample is a set of four game levels from      
Boulderdash, Link, Zelda, and Roguelike. The games were 
selected to have similar gameplay. By similar gameplay, we 
imply that following an equivalent action sequence in all the 
games will typically complete the level successfully. The 
training sets are created using an approach comparable to 

Shaker et al. (Shaker et al. 2015), who used abstract game 
timelines (sequence of actions in a game along with time 
deltas between actions) to generate game levels. The 
objective is to place obstacles that complement the actions 
at the right time and location such that the player action in 
the game timeline is necessary to move forward in a game. 

As outlined in the algorithm (Algorithm      1), a training 
example creation starts with a set of grid points on an empty 
grid. The starting point is usually chosen on the top left 
quadrant and the goal point is chosen on the bottom right. A 
sequence of actions is selected that will take the player’s 
avatar from one grid point to the next. This action sequence 
(e.g., jump, break a wall, pick a sword) is carried out through 
the grid as sprites like walls and locks are placed in the way 
to match the corresponding action. The action sequences are 
varied by changing the order of actions or permuting the 
combinations of actions randomly. Multiple combinations 
of actions that take the player’s avatar from the start to the 
goal state are considered. The same action sequence is used 
in all the games considered, but the specific game’s 
dynamics requires the placing of different obstacles to 
match the action. For example, in Boulderdash one has to 
avoid falling boulders and in Roguelike one needs to first 
pick up a key before passing a locked gate. The approach is 
generic and can be used to generate levels for multiple 
games starting from a common action sequence and path 
through the grid. 

Branched Generative Adversarial Network Model 
We used deep convolutional GANs to model game levels in 
multiple games by using an innovative branched generator 
matched with individual game specific discriminators.  
 

 
Algorithm 1: Training level generation algorithm.  



A GAN typically consists of two types of deep networks: a 
single generator and a single discriminator. In our novel 
architecture we have constructed a generator that starts from 
a random seed like a typical GAN but branches into four 
different outputs as seen in Figure 2. Each of the outputs 
corresponds to game-levels in four different games in the 
training set. We have as many discriminators as there are 
branches in the generator. Each discriminator is tied to a 
single game and distinguishes between generated examples 
and training examples. The intuition is that the latent space 
and unbranched layers capture the commonality across the 
games while the branched layers capture the differences. 
Independent GANs, would not learn any common patterns 
as the only common element, the random input from the 
latent space, cannot be trained.      

Each training sample is a multi-channel binary matrix, 
with each channel representing one type of sprite in the 
game and each grid point being a binary representation of 
the presence of the corresponding sprite at that grid point. 
The discriminators train independent of one another. Binary 
cross entropy loss from the discriminators is added to 
conditional loss from the generator. The generator loss is the 
sum of the binary cross entropy between the training sample 
and the generated image along with conditional loss if the 
number of sprites does not match the training level. The 
generators use batch normalization between convolution 
layers and LeakyReLU activation along with a final sigmoid 
activation to generate game level output. Each of the 
discriminators use a dropout of 30% to reduce overfitting. 

The generator generates four grid physics games 
(Boulderdash, Link, Zelda and Roguelike) of size 16x16 
from an initial input of 128 normally distributed random 
numbers. The training sample and generated game levels are 
represented as a tensor with nine channels, one each for each 
type of sprite (avatar, exit, floor, gold/health, key, lock, 
monster, wall and weapon). Unused channels are set to zero. 
The GANs were trained on a single GPU using 5000 
examples in the training set. The training epochs ranged 
from 600 to 1200 with a batch size of 64.  

Evaluation 
We use multiple evaluation metrics to quantify the quality 
of the generated levels. We check for solvability, the 
similarity of the gameplay between the different games, and 
novelty. Path similarity quantifies gameplay parity across 
games, while novelty measures variety in gameplay within 
levels of a single game. The details of the evaluation method 
are elaborated in this section. 

Solvability 
Solvability is determined using automated agents available 
in the GVGAI framework. If a level can be solved at least  

 

 
Figure 2: The GAN architecture consists of a branched generator 

and multiple parallel discriminators one for each game. 

once in 5 attempts by the automated agent, we consider the 
level to be solvable.   

Ideal Game Path Similarity 
A shortest path is calculated from the avatar’s initial position 
to the goal position with the stops along the way to pick up 
the necessary items to complete the level.  The shortest path 
does not measure solvability because it does not take into 
account the dynamic aspects of the game. However, the 
shortest path is used to evaluate other metrics discussed in 
the subsequent sections. We determine an ideal path for the 
avatar in the level based on Dijkstra’s shortest path 
algorithm (Dijkstra et al. 1959). 

A path similarity measure is calculated between the 
shortest paths game levels of distinct games generated 
together. This path similarity distance is used to verify that 
the GAN model has captured the similarity between the 
games. The path similarity distance is the Manhattan 
distance between the grid locations in the path. The formula 
of the distance calculation is given by the formula, 
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Path similarity distance d is given as a sum over all the 

steps in the solution, where (xb, yb) and (xz, yz) correspond to 
the grid position of the avatar in two distinct games, 
respectively. The shorter path is extended using copies of 
the goal location to match path lengths     . For each 
generated set of games, the average path distance is 
calculated, between all pairwise combinations of games. 
Path similarity distance distribution across the sets of 
generated levels is compared to the path similarity distance 
distribution in the training set. If the GAN captures the 
gameplay similarity between distinct games, the distribution 
of path similarity distance should be the same between the 
training set and generated sets. 
 



 
Figure 3: Two set of four games starting on the left Boulderdash, 

Link, Zelda and Roguelike from the training set. 

Novelty 
The path similarity distance discussed in the earlier section 
was about similarity between distinct games, novelty is a 
measure of similarity within a game. Novelty is a binary 
relational property between two game levels of the same 
game. A level is novel with respect to another if the path 
taken by the avatar, represented by the sequence of actions 
is different. Thus, if a level requires a completely new 
sequence of actions to complete, then it would be considered 
novel. To evaluate novelty, we use the Levenshtein distance 
(Levenshtein 1966) between two ideal path action 
sequences. If the Levenshtein distance is large between two 
levels of a game, then we can claim that the gameplay will 
be different to a player. For example, if the solution action 
sequence for two Zelda levels is (right, right, pick key, up, 
right, right) and (right, up, pick key, up, right), the distance 
would be two as the number of edits to go from one 
sequence to the other is two. 

Results and Discussion 
Figure 3 shows two sets of training game levels and Figure 4 
shows four sets of generated game levels from the GAN 
generator. It is interesting to notice that the GAN learns to 
place boulders in Boulderdash above the diamonds. One can 
also see that in Zelda, the generator sometimes confines 
monsters behind walls. To get a glimpse into what the 
generator is really learning, we take two random latent 
vectors and their corresponding levels for one game. We 
then generate a third level from the vector sum of the first 
two latent vectors. Figure 5 shows an example from 
Boulderdash. We can see that the vector sum captures 
monster locations from the first level and some of the 
diamond locations from the second level into the third level. 
As expected, the GAN is encoding relative positional 
patterns of sprites from the training set into the latent space 
and is encoding the relative positions of sprites in the four 
different games into a single common latent representation. 

We see from the examples in Figure 4 that the layout of 
sprites for monsters, keys, gold and health are similar across 
game levels in the different games. This correspondence is 
seen across all generated levels. 

 
Figure 4: Four sets of generated levels using the GAN generator 

starting on the left Boulderdash, Link, Zelda, and Roguelike. 

To validate and quantify the similarity of gameplay across 
games for generated game-level sets, we plot the average 
similarity distance between the ideal path for the avatar to 
reach the end state from the start state, picking up the 
necessary items and avoiding monsters. Figure 6 shows how 
the average path similarity distance is distributed in the 
baseline, training set and      the generated set. The baseline 
represents sets of four game levels chosen randomly without 
considering gameplay similarity. The distance between the 
distributions can be quantified using the Wasserstein 
distribution distance.  One can see that the generated sets of 
four levels have path similarity distribution closer 
(Wasserstein distance 161) to the training sets and further 
away from the baseline (Wasserstein distance 283). One 
could say the GAN has captured aspects of gameplay 
similarity across the four games.           

Training sets are generated explicitly with the same action 
sequence for all four game levels resulting in similar 
gameplay for all four levels. The training levels have the 
gameplay flowing from the top left to the bottom right and 
one can see this captured by the GAN. GAN generator loss 
for the set of four games are averaged together in the 
gradient calculation with no other explicit constraint to 
match gameplay across games. The indirect constraint 
through loss results in some increase in gameplay variation 
in the generated levels as seen in Figure 6 as expected. 

 

 
Figure 5: The third Boulderdash level generated from the vector 

sum of the latent seed vectors of the first two.  



 

 
Figure 6: Distribution of average path similarity distance between 

distinct games in a training set and generated set. 

We evaluate solvability of the generated levels by taking 
a set (50 levels for each game) of GAN generated levels and 
running an automated agent provided by the GVGAI 
framework. The agent is run up to five times to see if the 
level can be solved in allotted time of 2000 ticks. Figure 7 
shows the relative solvability of the four different games. 
Boulderdash has a higher solvability (70%) over all the 
other games because it does not have any dependency 
between actions. For example, the need to pick up a key 
before being able to open a lock which is present in the other 
games. The reason Zelda has the lowest solvability among 
the generated levels (40%) might be due the need for the 
GAN to reproduce narrow paths between walls to go from 
the starting point to the goal and the need to have access to 
a key to finish the level. 

The next evaluation metric we consider is novelty. 
Figure 8 shows how novelty of the generated levels 
compares with the novelty in the training levels of each 
game. We take 100 training and 100 generated levels for 
each game and calculate the distribution of pairwise 
Levenshtein distance between the ideal action sequence for 
the levels in the two sets. Distance is calculated between 
every level for a game with every other level in that set for 
that game. One can see that the variety or relative novelty of 
levels in the training set is captured by the GAN as the 
generated set has a similar distribution of values for the 
Levenshtein distance. By definition GANs are trying to 
mimic samples in the training sets, having a distribution of 
levels that are just as varied in the generated set as the 
original set implies that the generator has captured most of 
the complexity in the training set in its model.  

 

 
Figure 7: Generated levels solvable by an agent.  

  

 
Figure 8: Pairwise Levenshtein distance distribution as a measure 

of novelty in generated levels vs training levels. 

Conclusion 
GAN-based PCG often focuses on generating levels in 
individual games. There is an underlying commonality in 
how many games operate despite apparent variability on 
initial inspection, and we have shown that one can build a 
game-independent representation to capture that 
commonality of multiple games. Commonalities captured in 
a low dimensional latent space can then be explored to 
generate new interesting game levels, and possibly, new 
games. In this work we trained a novel branched GAN that 
can take a single random seed vector to generate parallel 
levels in four distinct games with similar gameplay, while 
capturing the variability seen in the training levels.  

We have presented a novel approach to building the 
training corpus starting from a prescribed gameplay action 
sequence. By using gameplay, one is starting from a player’s 
experience of the game. Building the training corpus based 
on the gameplay action sequence also guarantees that the 
paired levels generated have similar gameplay 
characteristics. We are currently using a simple rule-based 
algorithm but using answer-set programming techniques 
similar to the work done by Smith and Mateas (2011) could 
make this process more extensible. 

A promising direction for future work is to formalize 
specific game characteristics of a broad selection of games 
that can be represented in a single common representation. 
It will also be instructive to determine if there are classes of 
games that can be grouped based on specific aspects of 
gameplay and game rules. Further, exploring the possibility 
of capturing the temporal elements of games in the latent 
space may lead to more powerful PCG frameworks for 
broad classes of games. 
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