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Abstract— Accurately recognizing students’ affective states 
is critical for enabling adaptive learning environments to 
promote engagement and enhance learning outcomes. 
Multimodal approaches to student affect recognition capture 
multi-dimensional patterns of student behavior through the use 
of multiple data channels. An important factor in multimodal 
affect recognition is the context in which affect is experienced 
and exhibited. In this paper, we present a multimodal, multi-
task affect recognition framework that predicts students’ future 
affective states as auxiliary training tasks and uses prior 
affective states as input features to capture bi-directional 
affective dynamics and enhance the training of affect 
recognition models. Additionally, we investigate cross-stitch 
networks to maintain parameterized separation between shared 
and task-specific representations and task-specific uncertainty-
weighted loss functions for contextual modeling of student 
affective states. We evaluate our approach using interaction and 
posture data captured from students engaged with a game-
based learning environment for emergency medical training. 
Results indicate that the affective dynamics-based approach 
yields significant improvements in multimodal affect 
recognition across four different affective states. 
 

Index Terms—multitask learning, affect recognition, 
multimodal interaction, game-based learning environments 

I. INTRODUCTION 
Affect is a critical component of learning [1]. Positively 

valanced emotions such as delight or flow are often associated 
with improved learning outcomes and engagement [2]. 
However, negative emotions such as boredom often result in 
decreased learning outcomes and can be indicative of 
disengagement or disinterest [3]. Other emotions such as 
frustration or confusion often have a complex relationship 
with student learning. For example, frustration has been 
shown to be associated with a student’s attempt at overcoming 
a learning impasse or challenge, which is a vital component of 
learning [2]. The emotion of confusion is complex as well, as 
it is uncomfortable but may coincide with experiences of 
cognitive disequilibrium that precedes learning [4]. As 
students progress through a learning environment, they may 
experience a wide range of affective states, which are 
influential in shaping their learning outcomes as well as their 
motivational and cognitive processes [5]. For example, 
frustration has been shown to be followed by boredom 
(potentially leading to disengagement) as well as confusion 

(potentially leading to a state of increased engagement) [4]. 
Often, an impasse in learning (e.g., difficulties coinciding with 
a state of confusion) that is overcome easily may result in a 
rapid transition to a state of engaged concentration. However, 
if a student persists in a state of confusion for extended periods 
of time, a transition to a state of frustration may occur, 
increasing the risk of potential disengagement. Potential 
transitions to affective states that are correlated with 
diminished learning outcomes can be mitigated through the 
implementation of affect-sensitive interventions. Affect-
sensitive interventions can promote engagement and emotion 
regulation in support of student learning [6]. Creating affect-
sensitive interventions requires the development of affect 
recognition models that accurately detect students’ academic 
affective states based on observed student behavior data. The 
patterns and sequences of emotions that occur during student 
learning may provide valuable insight into a student’s current 
emotional state, and subsequent affect recognition models that 
take into account affective dynamics hold potential to yield 
improved predictive performance.  

Recent years have seen an increased focus on multimodal 
student affect recognition models [7] due to their ability to 
capture multiple concurrent perspectives on a student’s 
behavior. This process of capturing multiple data channels 
from varying data sources is reflective of human perception 
and has demonstrated improved predictive performance over 
unimodal systems [7], [8]. Sensor-based multimodal systems 
capture representations of a student’s physical behavior such 
as a student’s posture [9], facial expressions [10], or speech 
[11] through the use of physical sensors. An alternative to 
sensor-based systems are sensor-free systems. These 
multimodal frameworks are typically based on trace log data 
that contains recordings of student activity within a learning 
environment, such as gameplay actions within game-based 
learning environments [12].  

A promising approach to modeling affective sequences is 
predicting multiple affective states with a single output vector.  
A static output vector can represent a single affective sequence 
consisting of multiple target variables, each representing an 
affective state at a particular time interval. Because this 
necessitates a single model making multiple concurrent 
predictions, multi-task learning (MTL) provides a natural 
solution. MTL has several advantages over single-task 
modeling, including the ability to share feature representations 



and learned weights across multiple target variables, which 
introduces a form of model regularization [13]. Multi-task 
models also require a significantly lower number of 
parameters compared to the total number of parameters 
required by separately trained models for each individual task, 
while also allowing the model to inherently learn the 
interwoven relationships between the target variables [14]. 
Prior work indicates that MTL outperforms single-task 
learning in terms of predictive performance for a variety of 
tasks [15], [16]. However, the use of multiple tasks poses 
challenges regarding the weighting of each task’s predictive 
performance during training, as different predictive tasks 
often vary in nature and intended purpose. Additionally, the 
appropriate balance of task-specific and shared latent 
representations within a multi-task model can vary as well and 
have a noticeable impact on model performance.  

In this paper, we investigate the integration of temporal 
contextual features from students’ affective sequences as a 
means to improve models of student affect through multi-task 
learning. We hypothesize that using students’ future affective 
states as they engage with a game-based learning environment 
can be utilized as an auxiliary multi-task function to improve 
the predictive performance of the affect recognition models. 
Additionally, we explore how to optimally combine 
interaction-based and posture-based modalities by exploring 
potential deep learning architectures: multi-task fully 
connected feedforward neural networks and cross-stitch 
neural networks [17].  Finally, we examine the benefit of 
including a student’s prior affective states as a means of 
providing additional affect sequence information to improve 
the performance of affect recognition models. Our results 
indicate that the use of MTL to model affective sequence 
patterns from each student leads to improved prediction of 
multiple affective states, and the use of cross-stitch neural 
networks further strengthens predictive accuracy.  

II. RELATED WORK 

A. Multimodal Affect Recognition 
 Due to their multifaceted perception of student behavior 

and demonstrated improvements in predictive performance, 
multimodal approaches to affect recognition tasks have seen 
a growing interest in recent years. Song et al. use captured 
audio and facial expression data to train a recurrent neural 
network model to detect the presence of frustration in 
students [18]. Henderson et al. showed the improved 
performance of multimodal affect models through the use of 
interaction- and posture-based modalities while also 
investigating the impact of multimodal data fusion on 
predictive accuracy [8]. Wu et al. used head pose and eye 
gaze data to enhance the performance of a facial expression-
based continuous affect recognition model through the use of 
a guided temporal attention mechanism [19], while Ghaleb et 
al. integrated temporal contextual embeddings into 
multimodal long short-term memory (LSTM) models trained 
on audio and facial expression modalities [20].  

B. Affective Sequences 
 Affective dynamics has been the subject of growing 

interest. While a significant body of prior work focuses on 
predicting individual occurrences of various affective states 
[8], [21], these approaches often ignore the predictive 
information offered by a student’s overall affective trajectory, 
such as how a student transitions from one affective state to 
another throughout a single learning session. The shifts in a 

student’s affective states have been shown to reveal particular 
recurring patterns, and thus can provide predictive value in 
affect modeling. D’Mello and Graesser investigated a model 
of affective dynamics that focused on a cyclic model from 
engaged concentration to confusion that enhanced learning 
outcomes [4]. Additionally, the authors explored an 
alternative model that resulted in decreased learning as 
students transitioned from engaged concentration to 
confusion, frustration, and boredom, respectively. Andres et 
al. expanded on this work by exploring the usage of shorter 
transitory patterns, namely two-step patterns that consisted of 
only two affective states [22]. The authors investigated the 
presence of prolonged states of affect by analyzing four-step 
patterns of the same affective state, focusing on the 
correlation between particular affective patterns and student 
learning outcomes. Ocumpaugh et al. focused on the 
frequency of an expanded set of four-step prolonged 
emotions in addition to three-step patterns consisting of two 
affective states as they related to student actions in a blended 
learning system [23]. Botelho et al. investigated the 
performance of two-step affective transitions in students 
engaged with an intelligent tutoring system, in addition to 
investigating the time a student spent in a single affective 
state before transitioning to another state [24]. While there 
has been prior work investigating the use of sequential 
modeling (such as LSTMs) for predicting student affect [25], 
these approaches use the sequences of student behavioral data 
as input to predict a single affect label instead of predicting 
an affect sequence as output. Our work addresses this issue 
by exploiting the temporal information in students’ affective 
sequences to improve the predictive performance of the affect 
models through the use of auxiliary output multi-task 
predictions during the training phase. 

C. Multi-Task Learning 
 Recent years have seen MTL applied to a variety of 

tasks, including computer vision [26], natural language 
processing [27], and transfer learning [28]. While many 
multi-task models consist of a series of feedforward neural 
network layers, alternative deep learning architectures have 
been explored as well, including sluice networks [29], deep 
relationship networks [16], and cross-stitch networks [17]. 
More recently, MTL has been investigated as an alternative 
approach to student modeling, including for predicting post-
test scores based on individual questions [15], modeling 
student mastery of multiple concepts [30], and estimating 
self-reported measures of interest and engagement with a 
game-based learning environment [31]. Prior applications of 
multi-task learning within affective computing involve the 
prediction of multiple states of affect by a single model [25]. 

III. DATASET 
 The dataset used to investigate our multi-task, affective 

dynamics-based approach consists of posture and interaction 
data captured during student engagement with a game-based 
learning environment for training emergency medical skills, 
TC3Sim. Posture data was captured using a Microsoft Kinect 
sensor mounted on a tripod facing the front of each student, 
while the interaction data was extracted from gameplay trace 
data logs. Students’ affective states during gameplay were 
discreetly annotated and recorded in real time by two field 
observers in accordance with the Baker Rodrigo Ocumpaugh 
Monitoring Protocol (BROMP) [32]. For this study, data was 
obtained from a population of 119 students (83% male, 17% 
female) at The United States Military Academy. 



A.  TC3Sim Game-Based Learning Environment 
 TC3Sim is a serious game-based learning environment 

that is widely used to provide training for administering 
medical care within a 3D virtual environment. During the 
game, students assume the first-person role of a medic within 
various simulated narratives (Fig. 1). Students progress 
through the game by completing a series of scenarios that are 
centered on different non-player characters (NPCs) that 
sustain injuries and require medical attention. The students’ 
characters administer care in accordance with medical 
protocol that is presented to each student prior to beginning 
the gameplay session. Each student engaged with TC3Sim 
individually, with each gameplay session lasting 
approximately one hour.  

B. BROMP Protocol 
 Ground-truth labels of student affect were collected 

using the BROMP protocol [32]. BROMP is a coding 
procedure designed to produce quantitative labels of student 
affect and behavior using field observers and allows for 
efficient and discreet real-time annotations of learner affect 
based on holistic observations within real-world conditions. 
BROMP has been widely used in research on affect-sensitive 
learning technologies [33]. Notably, BROMP observations 
do not rely on a single data channel (e.g., facial expression). 
BROMP enables annotations to be contextually informed by 
the observers and includes practices for minimizing 
disruptions during annotation. Since BROMP is an 
observational protocol, it mitigates issues with self-reports 
such as recall, self-awareness, and self-presentation [34]. 

 Observers walk around the perimeter of the classroom 
and discreetly annotate observed students’ affective states 
using a hand-held device. Annotations of affect occurred in 
20-second intervals and were intended to be captured as 
discreetly as possible to minimize the influence of the 
observers’ presence and disruption of the students’ gameplay.  
Prior to this study, the two observers established an inter-rater 
agreement exceeding 0.6 in terms of Cohen’s Kappa [35]. 

 Any observations indicating disagreement between the 
observers were removed from the dataset, resulting in a final 
dataset consisting of 755 labeled affective states.  A total of 
435 of the BROMP observations were labeled as engaged 
concentration (M = 0.576, SD = 0.239), 174 as confused (M 
= 0.231, SD = 0.185), 73 as bored (M = 0.097, SD = 0.161), 
32 as frustrated (M = 0.042, SD = 0.182), 29 as surprised (M 
= 0.038, SD = 0.045) and 12 as anxious (M = 0.016, SD = 
0.089). Due to the low number of observations of anxious, 
this affective state is not considered in any of the following 
analyses.  

IV. METHODOLOGY 

A. MTL with Affective Sequences 
 To adapt the single-task affect recognition approach to 

an MTL formulation, the target variables were expanded to 
include a one-hot representation of each possible affective 
state. The one-hot vector was indicative of the affective state 
Bi+1 that followed the current BROMP observation Bi (Fig. 2). 
Bi was a binary indicator of the presence of one of the five 
possible affective states. Therefore, the multi-task models 
were modeled using a label vector of size 6 (binary indicator 
of a single affective state + one-hot vector of size 5). Using 
the affect model for bored as an example, the multi-task 
output vector for a positive annotated occurrence of bored 
followed by an annotation of confused would be [1, 0, 1, 0, 0, 
0], while a negative annotated occurrence of bored followed 
by a subsequent annotation of frustrated would be [0, 0, 0, 0, 
1, 0]. 

 Because the multi-task models are predicting future 
occurrences of each affective state, it is impractical to utilize 
these labels as input features as this information would not be 
available in a run-time environment. As a result, we use these 
labels as auxiliary output variables for the purpose of 
boosting the predictive performance of the multi-task models 
relative to the current affective state, an approach that has 
been previously demonstrated to improve predictive 
performance [27], [36]. This process can be employed when 
certain features are unhelpful for predicting other output 
variables or are not available until after the predictions are 
made, allowing the features to be used to present additional 
information to the model during the training process only 
[36]. In this case, presenting the subsequent affective state to 
the multi-task model allows the model to potentially observe 
differential patterns in student behavior prior to transitioning 
to another affective state. For example, a student’s postural 
behavior while currently in a state of engaged concentration 
may fluctuate depending on if the subsequent affective state 
is also engaged concentration or a different state such as 
confusion. By introducing additional predictive tasks, the 
model is trained to extract temporal features and patterns 
from affective sequences that can improve the model’s 
prediction of the current affective state. The occurrences of 
each two-step affective sequence are shown in Fig. 3. 

The most common affect sequences are persisting states 
of engaged concentration (denoted as “Concentrating” in 
Fig. 3), consecutive states of confusion, and alternating 
between these two states. This result aligns with the proposed 
model by D’Mello and Graesser [4]. Other notable sequences 
are students transitions between states of bored and engaged 
concentration, particularly as this indicates that students are 
often capable from returning to an engaged state while 
previously being in a state of relative disengagement, a 
behavior previously observed by Andres et al. [22].  

Fig. 1.  TC3Sim game-based learning environment. 

Fig. 2.  Multi-task feature vector representation. 

Bi Bi+1

Binary Bored Confused Engaged Frustrated Surprised

Bi+1 Bi+1 Bi+1 Bi+1



B. Cross-Stitch Networks 
 An active area of investigation in multi-task deep 

learning is determining the appropriate level of layer 
connectivity across each task. A multi-task model that 
consists of only fully connected layers contains the highest 
level of connectivity, as each layer propagates the same fully 
shared data representation across all tasks with the exception 
of task-specific output layers. Alternatively, to avoid any 
inter-task communication within the multi-task framework, 
separate models can be trained for each task, so that the 
trained weights are unique for each output. While prior work 
applying multi-task learning for student modeling utilizes full 
connectivity across tasks within the model’s hidden layers 
[15], [30], other work within computer vision has explored 
the benefits of “split” neural architectures, or architectures 
that maintain a degree of separation between tasks within a 
pre-determined subset of the model’s hidden layers.  

 Cross-stitch networks were proposed by Misra et al. as a 
generalizable approach to implementing “split” architectures 
by implementing parameterized linear combinations between 
a network’s hidden layers that can learn optimal weightings 
between shared and task-specific latent representations [17]. 
This approach allows feature representations to be combined 
within certain hidden layers and shared across tasks while 
also maintaining separation between task-specific 
representations. For example, in the case of modeling two 
tasks (A and B), a learned weight matrix ⍺ is used to 
parameterize the linear combinations of multiple tasks (⍺AB, 
⍺BA) as well as activations from a single task (⍺AA, ⍺BB) (Fig. 
4). A value of 0.5 for ⍺ indicates that the representations are 
equally shared, with a value of 0 or 1 indicating that the 
representations are completely separate. Specifically, 
Equation 1 shows how the shared representation x̂ is 
calculated at row i and column j by a cross-stitch unit that 
takes an input activation map, x: 

The values of the weight matrix ⍺ are adjusted during 
backpropagation, with the partial derivatives easily 
calculatable as the cross-stitch units are modeled with linear 
combinations. We evaluate cross-stitch networks alongside a 
multi-task variant of fully connected feedforward neural 
networks in our modeling of student affect to investigate 

whether the level of connectivity within each architecture has 
an observable impact on the predictive performance of the 
affect models.		

C.  Posture-Based Feature Engineering 
 The features representing the posture data captured from 

the Kinect sensor are generated from three tracked vertices: 
top_skull, center_shoulder, and head. These vertices are 
selected based on prior literature that has investigated the 
effectiveness of the posture modality within affect 
recognition tasks [37]. Each posture-based feature is 
calculated based on the postural position and movement of 
each student that occurs within the 20-second observational 
window prior to each BROMP observation. Eighteen distinct 
features are generated for each vertex, including the most 
recent observed distance, minimum and maximum observed 
distance, median observed distance, variance in the observed 
distances, and most recent Z-coordinate value. In this work, 
“distance” refers to the Euclidean distance between each 
vertex and the Kinect sensor. In addition to these features, the 
minimum, maximum, median, and variance in the distance is 
calculated across the time windows of 5, 10, and 20 seconds 
that precede the corresponding BROMP observation. Several 
additional features were distilled that calculated the total 
change in the position (relative to the prior vertex’s location 
in 3D coordinate space) and distance (relative to the prior 
vertex’s distance from the Kinect sensor) across the 
preceding 3- and 20-second time windows. Using the median 
distance of the head vertex across the entire dataset, the final 
features were calculated to represent whether the student was 
leaning forward, backwards, and upright using the current 
position of the head vertex. These postural features were 
averaged across time windows of 5, 10, and 20 seconds, in 
addition to the entire gameplay session that had transpired 
prior to the current BROMP observation. 

 In addition to the spatial posture features, temporally 
based features were generated using the calculated distance 
between the (x, y, z) coordinates of two consecutive sensor 
readings from the head vertex. These delta values were used 
to generate velocity-based features averaged across time 
windows of the preceding 3, 5, 10, and 20 seconds prior to 
each BROMP observation. The mean, median, max, and 
variance of the calculated velocity values were used as 
features. Forty-eight new features were produced from this 
process. As a result of the high number of features generated 
from this process, the center_shoulder and top_skull vertices 
were not utilized for generating temporally based features.  

D. Interaction-Based Feature Engineering 
 The interaction-based features are distilled from the 

generated log files that record each student’s in-game actions 
and movements, and the condition of particular NPCs 
throughout the game [8]. Features that represent the condition 
of the NPCs that receive medical attention include the 
changes in systolic blood pressure, exposed wound type, 
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heart rate, and lung volume. Additional features were distilled 
that represented students’ in-game actions such as performing 
a check of an NPC’s vital signs and requesting an emergency 
medical evacuation. The interaction-based features were 
calculated across 20-second time intervals prior to each 
BROMP observation. Features were represented by using a 
summative count or averaging across the preceding time 
interval or were represented using statistical calculations such 
as standard deviation or median values for information such 
as a virtual patient’s blood pressure. In total, thirty-nine 
interaction-based features were generated during this process.  

E. Feature Selection 
 Due to the high number of features from the different 

modalities, feature selection was performed on each modality 
using forward feature selection. Forward feature selection 
iterates through a set of features in a greedy fashion beginning 
with a single feature and increasing the number of features 
according to their predictive performance on the target 
variable. This process iterates until a pre-determined 
threshold has been reached or until all features have been 
evaluated. However, due to the greedy search heuristic, the 
feature selection is weighted more heavily towards features 
that are evaluated earlier (e.g., the first feature evaluated is 
always selected). To mitigate any bias based on the arbitrary 
ordering of the feature candidates, we run 100 independent 
iterations of the forward feature selection. Each iteration uses 
a randomized feature ordering, and the features that are most 
frequently selected across all iterations are selected for 
training the affect recognition models. This approach 
provides a compromise between the speed of a greedy search 
heuristic and the computational cost of an exhaustive feature 
selection process [38]. Forward feature selection was 
performed on each modality separately, with the ten most 
predictive features per modality being combined at a feature 
level for training the affect recognition models.  

F. Affect Model Evaluation 
 To evaluate the performance of the multi-task models 

(fully connected and cross-stitch networks), we train a series 
of single-task neural and non-neural baseline models in 
addition to several non-neural multi-task baseline models. 
The baseline models were k-nearest neighbor, elastic net, 
random forest, and feed-forward neural network. These were 
selected as baselines due to their capabilities of both single-
task and multi-task learning. The single-task baseline models 
demonstrate the performance of models without any affective 
dynamics context, while the multi-task non-neural baseline 
models verify that the deep learning-based approaches (fully 
connected and cross-stitch networks) achieve higher 
performance with the affective dynamics context than non-
neural multi-task models. 

 Each model was evaluated with nested ten-fold cross-
validation, with each fold split at a student-level to prevent 
data leakage across the training, validation, and test sets. 
Within each outer cross-validation fold, the data were 
standardized to ensure a mean of zero and standard deviation 
of one prior to performing feature selection. Hyperparameter 
tuning was performed using three-fold cross-validation 
within the training data of the nested outer cross-validation. 
The hyperparameters evaluated were the number of nearest 
neighbors (k-nearest neighbors), ratio of L1 and L2 
regularization (elastic net), number of estimators (random 
forest), and the number and size of the hidden layers (neural 
network). Each deep learning model’s hidden layer used a 

hyperbolic tangent activation function due to the 
standardization of the data, as well as a dropout probability 
of 0.5 in the last hidden layer to mitigate potential overfitting. 
The loss function for the feedforward single-task network 
was binary cross entropy. Additionally, minority cloning was 
employed as an oversampling technique to resolve the class 
imbalance present within each affective state’s dataset. This 
process clones each instance of the minority class until the 
class distribution is brought to a more uniform level.  

 An active line of investigation in MTL is determining the 
optimal distribution of the loss term across the different tasks. 
A common naïve approach to MTL loss is to assign a uniform 
weight to the loss term for each individual task t when 
calculating the summative loss term: 

However, as the auxiliary tasks of predicting future 
affective states is distinguishable from the task of predicting 
the current affective state, we explore the use of a loss 
function that uses uncertainty weighting for each individual 
task [26]. The weight Wt for each task is determined by 
maximizing the log likelihood of an assumed multivariate 
Gaussian distribution. By optimizing for the model 
parameters θ and observation noise σ, the following loss 
function is derived: 

In this way, optimizing for σt for each task t allows the 
relative weight of each task-specific loss function (i.e., the 
first term in Equation 3) to be learned from the data during 
the training process, while the second term in Equation 3 acts 
as a regularization term to prevent σ from increasing 
exponentially, which prohibits the model from learning. This 
allows the model to assign different weighted losses between 
the primary task (predicting the current affective state) and 
the secondary auxiliary tasks (predicting the subsequent 
affective state). 

 In addition to the single-task baseline model, four multi-
task deep learning models were evaluated, uniformly 
weighted and uncertainty-weighted fully connected networks 
and cross-stitch networks. Each deep learning model was 
trained for 100 epochs, with early stopping implemented 
using the validation set and a patience of 10 epochs. Each 
network contained either two or three hidden layers with each 
layer containing either 8, 16, 32, or 64 nodes. For each cross-
stitch model, each pair of hidden layers contained a cross-
stitch unit. Data standardization, feature selection, and 
minority cloning occurred within each outer cross-validation 
iteration using the training folds to protect against data 
leakage across the validation and test folds. Each nested 
cross-validation fold was kept consistent across all 
evaluations to ensure fair comparisons between models.  

V. RESULTS AND DISCUSSION 

 While the five auxiliary predictive tasks (i.e., predicting 
the subsequent affective state) were utilized within the 
training process, the model evaluation focused exclusively on 
the predictive performance of the current affective state only. 
As a result, the predicted values of the auxiliary affective 
states are not considered in the results presented in this 
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section. The primary evaluation metric is Area Under Curve 
(AUC), due to its ability to account for data imbalances. 
Additional evaluation metrics are the raw accuracy and the 
F1 score for each model. For each affective state (bored, 
confused, engaged concentration, frustrated, surprised), the 
highest performing single-task baseline models in addition to 
all multi-task model variants are shown in Table 1, with the 
best performing models in terms of AUC highlighted in bold. 

 The feedforward neural networks (FFNNs) 
outperformed all other non-neural baselines (single-task and 
multi-task) across all affective states. Of note is the fact that 
the uncertainty-weighted models (annotated with “(W)” in 
Table 1) and the cross-stitch models are all variations of 
FFNNs, therefore FFNNs will always be the “optimal” 
model. The inclusion of subsequent affective states as 
auxiliary outputs for multi-task modeling appeared to offer 
improved performance over the single-task baselines for all 
affective states. The uniformly weighted fully connected 
model was the highest performing affect model for bored, 
while the uniformly weighted cross-stitch model was the 
highest performing model for the remaining four affective 
states. Of note is the fact that, with the exception of bored, 
both variations of the fully connected model failed to 

outperform the single-task baselines, while the uniformly 
weighted cross-stitch network outperformed each baseline, 
and the uncertainty-weighted cross-stitch network 
outperformed the baseline in two affective states (confused 
and surprised). It did not appear that the uncertainty-
weighted loss function improved performance significantly 
for either neural network model, achieving lower 
performance than almost every uniformly weighted 
counterpart. Although a multi-task model outperformed the 
single-task baseline for each affective state, the improvement 
was marginal at best for three affective states (confused, 
engaged concentration, and frustrated), with an incremental 
improvement of less than 0.02 in terms of AUC.  The 
inclusion of the auxiliary affect sequence data showed 
improved performance for surprised and bored, which is 
surprising as the affect sequences for these two affective 
states typically transitioned to a state of engaged 
concentration (Fig. 3). This indicates that a student’s 
behavior while bored or surprised may differ depending on if 
the student is about to transition to a state of engaged 
concentration vs. a state of bored, confused, or another 
uncommon affective transition. 

 To further investigate the impact of integrating temporal 
information into the multi-task affect recognition models, we 
include additional input features that represent the prior 
affective states exhibited by each student. This information is 
incorporated through five summative features representing 
the total number of observations of each of the five affective 
states prior to the current BROMP observation. The current 
BROMP observation is not included in these features as this 
would be a form of data leakage. This process is the natural 
next step in incorporating affective dynamics within each 
student model, so that each model can be induced using both 
the antecedent and subsequent affective states. This allows 
the model to be trained using bidirectional affective 
sequences. The same model architectures using the future 
affective states as auxiliary tasks for the multi-task models 
shown in Table 1 are re-evaluated while also incorporating 
the prior affective states as input features (Table 2). The same 
single-task baseline results are included in Tables 1 and 2 
because the purpose of these models is to demonstrate the 
affect models’ predictive performance without providing any 
affective dynamics context. 

 The addition of the preceding affect information into the 
input features increased the performance of the affect models 
for four affective states, with the exception of surprised. 
Additionally, the uncertainty-weighted loss function induced 
the highest performance for two affective states, bored and 
confused. Among the four affective states, the fully connected 
multi-task model was the highest performing model for one 
affective state, with the rest being modeled most effectively 
by cross-stitch networks. This provides further evidence for 
the enhancements offered by dynamically weighting the 
balance between the shared and task-specific representations 
within the multi-task models. 

 To investigate whether the improvements of the multi-
task affective dynamic-based models are attributed to random 
chance, the results of the single-task baseline models are 
compared with the results of the optimal multi-task model for 
each affective state. The cross-validation results of the 
models were compared using a Wilcoxon signed-rank test, 
which is a non-parametric statistical test. This measure is 
used as the cross-validation results cannot be assumed to be 

TABLE I.  MODEL EVALUATION RESULTS FOR SINGLE-TASK AND 
MULTI-TASK MODELS 

Bored 
Model Type AUC Accuracy F1 Score 
Single-Task 0.779 0.833 0.414 
Fully Connected  0.844 0.798 0.429 
Fully Connected (W) 0.839 0.848 0.414 
Cross-Stitch 0.838 0.832 0.465 
Cross-Stitch (W) 0.818 0.844 0.452 

Confused 
Model Type AUC Accuracy F1 Score 
Single-Task 0.546 0.570 0.301 
Fully Connected  0.528 0.752 0.009 
Fully Connected (W) 0.508 0.722 0.110 
Cross-Stitch 0.563 0.620 0.313 
Cross-Stitch (W) 0.561 0.614 0.314 

Engaged Concentration 
Model Type AUC Accuracy F1 Score 
Single-Task 0.586 0.554 0.589 
Fully Connected  0.584 0.584 0.680 
Fully Connected (W) 0.570 0.580 0.692 
Cross-Stitch 0.592 0.576 0.652 
Cross-Stitch (W) 0.561 0.586 0.666 

Frustrated 
Model Type AUC Accuracy F1 Score 
Single-Task 0.594 0.742 0.115 
Fully Connected  0.537 0.478 0.046 
Fully Connected (W) 0.582 0.360 0.083 
Cross-Stitch 0.602 0.800 0.095 
Cross-Stitch (W) 0.592 0.789 0.117 

Surprised 
Model Type AUC Accuracy F1 Score 
Single-Task 0.576 0.846 0.062 
Fully Connected  0.523 0.702 0.055 
Fully Connected (W) 0.507 0.624 0.078 
Cross-Stitch 0.646 0.622 0.099 
Cross-Stitch (W) 0.578 0.874 0.051 
     



normally distributed. Using a significance level of 0.05, the 
affective dynamics-based models were shown to demonstrate 
significant increases in performance for four affective states: 
bored (p=0.023), confused (p=0.018), engaged concentration 
(p=0.038), and surprised (p=0.038). Although the 
improvement of the affective models for frustrated was 
noticeable (0.071 AUC), it was not observed to be 
statistically significant (p=0.121). 

There are limitations of this work that should be noted. 
The modeling of affective dynamics is reliant on having 
multiple labeled observations of affect for each student and is 
therefore incompatible with affective training sets that 
contain only a single label per student. Additionally, 
annotated occurrences of affect are sometimes removed in 
cases of inter-rater disagreement, which results in gaps in 
students’ affective sequences throughout their learning 
sessions. While using summative or averaged feature 
representations can help mitigate this issue, this approach 
removes any semblance of temporal order between multiple 
affect labels. Therefore, an area of future research is to 
investigate the tradeoff between temporal context and model 
performance. For the purposes of this study, we utilize the 
annotated observations of affect to represent the prior 

affective states for the affective dynamics-based models. 
However, the models may not have access to annotated 
observations of a student’s prior affective states in a run-time 
setting. In these instances, the models would require an 
alternative representation of prior affect, such as the model’s 
prior predictions or confidence intervals for each affective 
state. Finally, the predictive performance of this work is 
likely dependent on the number of observations of each 
affective transition present in the dataset. For example, 
roughly 30% of the possible affective transitions in our 
dataset contained less than two observations. While these 
transitions are less likely to occur in a real-world setting, this 
likely impacts the overall generalizability of the models.   

VI. CONCLUSION 
 Affect-sensitive learning environments that are designed 

to enhance student learning and improve student engagement 
could significantly benefit from accurate affect recognition 
models. In this work, we demonstrate the effectiveness of 
utilizing affect sequences to improve the predictive 
performance of multimodal affect recognition models 
through multi-task learning. Our approach allows models of 
students affect to capture patterns of student behavior based 
on unidirectional and bi-directional sequences of affect using 
auxiliary classification tasks and input feature engineering 
combined with multi-task models. Further, we investigate the 
use of different multi-task models in addition to uniformly 
weighted and uncertainty-weighted loss. Results indicate that 
the use of cross-stitch networks as a multi-task modeling 
technique leads to increased predictive accuracy for the 
majority of the affective states evaluated, and the use of 
affective dynamics context within the models increases the 
accuracy of all affective states. Additionally, further 
improvements to the models’ performance can be induced 
through the use of bi-directional affective sequence data, in 
addition to uncertainty-weighted loss functions within the 
multi-task models.  

 The results suggest several promising directions for 
future research. First, the tradeoff between temporal 
information and model generalizability can be further 
explored by using different representations of the subsequent 
affective states instead of the one-hot encoding of a single 
state. Additionally, the generalizability of the affective 
dynamics-based multi-task modeling approach should be 
evaluated using different learning environments, student 
populations, and modalities. Our approach is dependent on 
the coding scheme used to annotate students’ affective states 
in our dataset, so evaluating the performance of our models 
using different observational protocols or another method 
such as self-report would provide further insight into the 
impact that these factors have on our modeling approach. 
Finally, it is important to investigate the practicality of 
affective dynamics-based multi-task modeling through the 
integration of the models into a run-time setting, enabling 
user-adaptive features such as affect-sensitive feedback and 
guidance to improve learning outcomes and increase student 
engagement. 
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TABLE II.  MODEL EVALUATION RESULTS FOR SINGLE-TASK AND 
MULTI-TASK MODELS 

Bored 
Model Type AUC Accuracy F1 Score 
Single-Task 0.779 0.833 0.414 
Fully Connected  0.843 0.812 0.430 
Fully Connected (W) 0.841 0.820 0.434 
Cross-Stitch 0.854 0.811 0.435 
Cross-Stitch (W) 0.861 0.808 0.427 

Confused 
Model Type AUC Accuracy F1 Score 
Single-Task 0.546 0.570 0.301 
Fully Connected  0.559 0.618 0.323 
Fully Connected (W) 0.551 0.613 0.304 
Cross-Stitch 0.560 0.622 0.327 
Cross-Stitch (W) 0.614 0.635 0.368 

Engaged Concentration 
Model Type AUC Accuracy F1 Score 
Single-Task 0.586 0.554 0.589 
Fully Connected  0.597 0.619 0.685 
Fully Connected (W) 0.606 0.601 0.658 
Cross-Stitch 0.627 0.604 0.676 
Cross-Stitch (W) 0.614 0.608 0.679 

Frustrated 
Model Type AUC Accuracy F1 Score 
Single-Task 0.594 0.742 0.115 
Fully Connected  0.665 0.600 0.073 
Fully Connected (W) 0.633 0.360 0.064 
Cross-Stitch 0.572 0.784 0.057 
Cross-Stitch (W) 0.648 0.780 0.123 

Surprised 
Model Type AUC Accuracy F1 Score 
Single-Task 0.576 0.846 0.062 
Fully Connected  0.537 0.823 0.037 
Fully Connected (W) 0.507 0.762 0.031 
Cross-Stitch 0.548 0.685 0.070 
Cross-Stitch (W) 0.526 0.831 0.047 
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