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ABSTRACT 
Stealth assessment in game-based learning environments has 

demonstrated significant promise for predicting student competen-

cies and learning outcomes through unobtrusive data capture of 

student gameplay interactions. However, as machine learning tech-

niques for student competency modeling have increased in 

complexity, the need for substantial data to induce such models has 

likewise increased. This raises scalability concerns, as capturing 

game interaction data is often logistically challenging yet necessary 

for supervised learning of student competency models. The gener-

alizability of such models also poses significant challenges, and the 

performance of these models when applied to new domains or 

gameplay scenarios often suffers. To address these issues, we in-

troduce a zero-shot learning approach that utilizes conditional 

generative modeling to generalize stealth assessment models for 

new domains in which prior data and competency labels may not 

exist. We evaluate our approach using observed student interac-

tions with a game-based learning environment for introductory 

genetics. We use a conditional generative model to map latent em-

beddings of genetics concepts and student competencies to student 

gameplay patterns, enabling the generation of synthetic gameplay 

data associated with concepts and game levels that have not been 

previously introduced. Results indicate the zero-shot learning ap-

proach enhances the performance of the competency models on 

unseen game levels and concepts, pointing to more generalizable 

stealth assessment models and improved prediction of student com-

petencies.  
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1. INTRODUCTION 
Game-based learning has been shown to be effective at promoting 

student engagement and fostering enhanced learning experiences 

[7, 31]. These environments can complement traditional learning 

methods and help students acquire “21st century skills” such as dig-

ital literacy, creative thinking, and knowledge acquisition [4]. 

Further, game-based learning environments can enable educators to 

unobtrusively analyze student behavior through stealth assessment 

for the purpose of improving learning outcomes [9, 35]. Stealth as-

sessment, offers a systematic approach for constructing data-driven 

models of student performance derived from evidentiary arguments 

[6, 29]. Despite these promising benefits, data-driven student mod-

eling techniques are growing in complexity and often require large 

amounts of training data, which poses significant challenges.  

Collecting sufficient data for training student models is often time 

and resource intensive, raising scalability concerns for stealth as-

sessment frameworks [45]. Practitioners may also find that 

modeling student behavior in new domains, educational contexts, 

and populations is infeasible due to data sparsity issues. Further, 

circumstances may arise where there is no prior data to train stealth 

assessment models. Examples include where post-test surveys are 

impractical to administer, such as informal learning environments 

like museum exhibits, or if a learning concept or in-game problem-

solving task is being deployed for the first time. These problems 

pose significant practical challenges for stealth assessment models.  

Few-shot learning has been introduced as an effective method for 

classification tasks where labeled data may be scarce for certain 

classes or tasks [11, 23, 26, 45]. In particular, zero-shot learning 

(ZSL) refers to scenarios where no samples of a specific class are 

present at training. ZSL forms a mapping between the data and 

class labels present at training (“seen” data) and data absent from 

the training set (“unseen” data) using other attributes (semantic 

data) to bridge the gap between these two domains. ZSL can also 

address the aforementioned issues with stealth assessment by gen-

erating competent augmented data representative of the “unseen” 

classes, maintaining intra-class variance while promoting inter-

class discrimination based on semantic relationships within the data 

[11, 45]. This allows for effective data augmentation that can be 

used to train downstream classifiers to make accurate inferences on 

data samples from new or unseen classes. Because these techniques 
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are designed to work in the absence of training data for new or un-

seen classes, they can be used to bootstrap new models and help 

mitigate the “cold start” problem where models make poor infer-

ences due to this lack of class-specific training data [46].  

In this work, we propose a generative zero-shot learning approach 

to improve stealth assessment models for predicting student com-

petencies for certain gameplay levels and educational concepts 

missing prior student interaction data. We utilize conditional gen-

erative adversarial networks and embedding representations of 

introductory genetics concepts to learn latent mappings between 

student competencies and gameplay behaviors. By generating syn-

thetic gameplay data conditioned on genetics concept descriptors, 

the generalizability of the competency models can be enhanced, 

leading to improved predictive performance. Our approach is eval-

uated using Geniventure, a game-based learning environment for 

teaching introductory genetics concepts to middle and high school 

students. Stealth assessment models induced with augmented stu-

dent gameplay data are used to assess our generative ZSL approach. 

There are few zero-shot learning methods applied within educa-

tional domains [11, 22, 45]. However, to our knowledge there has 

not been prior work on addressing the unseen class problem in 

stealth assessment. We demonstrate that our approach is an effec-

tive method for addressing challenges with data sparsity and unseen 

class labels for student competency models in a game-based learn-

ing environment. Finally, we further show that our approach leads 

to improvement in the predictive performance of student compe-

tency models when compared against non-augmented baselines and 

alternative generative modeling techniques.  

2. RELATED WORK 
This work lies at the intersection of zero-shot learning and stealth 

assessment, particularly addressing approaches to student compe-

tency prediction for a range of genetics concepts, which is a subset 

of student modeling. We provide an overview of recent work per-

taining to student modeling in game-based learning, with a focus 

on stealth assessment. Additionally, we provide a review of recent 

zero-shot learning research pertaining to student modeling, in addi-

tion to zero-shot learning using generative modeling approaches. 

2.1 Student Modeling in 

Game-Based Learning  
Student modeling has been shown to be effective at predicting com-

plex learning processes such as engagement, flow, and the 

incubation effect [21, 32, 40]. More specifically, student modeling 

within game-based learning has been shown to positively impact 

deep learning and higher order thinking [19], promote self-regu-

lated learning during gameplay [20, 34, 42], and address cognitive, 

affective, and social factors for fostering enhanced learning out-

comes [3, 16]. Additionally, student modeling within game-based 

learning environments has been used to analyze and predict student 

competency levels in a variety of domains, including physics [41], 

literacy [40], and computational thinking. Student modeling in ed-

ucational games has also been used to enable personalized and 

adaptive learning environments [5]. Spaulding et al. investigate the 

efficacy of transfer of learned cognitive models between two game-

based learning environments [40]. The authors investigate the issue 

of negative transfer by utilizing Gaussian processes and an in-

stance-weighting approach that considers the similarity between 

source and target tasks. Additionally, they address the aforemen-

tioned “cold-start” problem with a multi-task learning approach. 

Other studies have explored data-driven approaches for inferring 

student competencies by modeling their in-game progression 

through activity log data [12]. Similar data-driven approaches have 

attempted to design student learning profilers that can inform prac-

titioners in their design of adaptive gamified learning environments 

tailored to students’ interests and needs. One example is SPOnto, a 

student profile ontology, that employs a multi-phase pipeline for 

student classification [29]. By predicting self-reported student type, 

intelligence type, and learning difficulties, the authors’ approach 

shows promise for personalized learning systems enabled by stu-

dent behavioral patterns. 

2.2 Stealth Assessment 
There has been increased emphasis on developing effective and ro-

bust stealth assessment frameworks in recent years. By varying 

multiple input features (e.g., ECD model, sample size, data normal-

ity significance levels), Georgiadis et al. find that Gaussian Naïve 

Bayes and C4.5 models were effective for use in stealth assessment 

and were capable of handling different data distributions with ex-

treme non-normality [14]. However, these models’ accuracy 

degrades as ECD models increase in complexity. Shute and Rahimi 

utilize stealth assessment to establish a link between creativity and 

the properties of well-established learning games that foster crea-

tive behavior and propose a creativity criterion [36]. Using Physics 

Playground and Bayesian networks, they show that their stealth as-

sessment framework offers a valid measure for inferring creativity 

and was significantly correlated with other performance-based 

measures of creativity. In contrast to traditional approaches, deep 

learning-based methods such as long-short term memory networks 

(LSTMs) have been utilized as a method to model long-term tem-

poral dependencies within student gameplay behaviors [18]. Min et 

al. employ LSTMs and n-gram based feed forward neural networks 

and compare their performance to competitive baselines [24]. By 

combining students’ pre-learning measures and interaction log data 

from a game-based learning environment, the LSTM-based ap-

proach outperformed both baseline methods and the highest 

performing FFNN using early prediction metrics. Akram et al. 

achieve similar results supporting the effectiveness of LSTMs as a 

student modeling technique [1]. 

2.3 Zero-Shot Learning 
Zero-shot learning, first introduced as “zero-data learning” [23], 

considers the task of recognizing new classes whose instances may 

not have been seen during training. Recent advances in ZSL have 

largely been applied in the image and video classification domains, 

but relatively little work has explored its effectiveness in learning 

analytics. Wu et al. introduce the “ZSL feedback challenge” utiliz-

ing a dataset of 8 assignments with 800 unique solutions to propose 

a method for attributing feedback to specific sections of student 

code and to trace knowledge over time [45]. The authors achieve 

optimal performance by combining a rubric sampling technique 

with a multimodal variational autoencoder. Their framework can 

effectively track student growth over time and can provide feed-

back on non-compiled programs. In an alternative approach, 

Efremov et al. apply neural program synthesis, a reinforcement 

learning approach, to generate feedback and step-by-step hints for 

students from a partial solution [11]. They incorporate abstract syn-

tax tree representations of student code with a tree-based bi-

directional LSTM architecture to encode students’ inputs. The 

learned policy network outperforms state-of-the-art methods such 

as a continuous hint factory (CHF) and can provide feedback on 

specific lines of code.  

Generative models are another method for approaching the ZSL 

problem. Mishra et al. introduce a conditional variational autoen-

coder conditioned on a class embedding vector to reduce domain 

shift across unseen classes [26]. The generative model is used to 



produce synthetic training data that is utilized by a downstream 

classifier. Their generalized zero-shot learning approach is applied 

to five popular image recognition datasets and is able to achieve 

state-of-the-art performance using top-k and per class accuracy.  

We contribute to this line of research by introducing a zero-shot 

learning approach to improve the generalizability of stealth assess-

ment models. This work employs conditional generative 

adversarial networks for creating synthetic gameplay data from 

concepts for which there was no previous student interaction data 

available at training. We demonstrate that this method can improve 

predictive performance of student mastery within unseen game lev-

els and educational concepts, highlighting its potential as a method 

for generalizing student competency models. 

3. STUDENT GAMEPLAY DATA 
Our generative ZSL method is implemented using a dataset cap-

tured from students’ interactions with a game-based learning 

environment designed to teach genetics. By generating features 

from the students’ gameplay trace data, we are able to induce stu-

dent competency models without utilizing inherently intrusive or 

distracting methods such as external assessments or data capture 

through physical sensors. Student competencies for the different 

genetics concepts presented in Geniventure are quantified using a 

post-test knowledge assessment, with different questions corre-

sponding to different concepts within the game’s individual levels. 

These levels are divided into “seen” and “unseen” groups for eval-

uation of the ZSL data augmentation performance.  

3.1 Geniventure Learning Environment 
To evaluate the impact of our generative ZSL approach to student 

competency modeling, we use gameplay interaction log data cap-

tured from students engaging with Geniventure. Geniventure is 

targeted towards middle and high school students (ages 11-18 

years) and the overall design of the game is guided by fundamental 

genetics concepts aligning with the Next Generation Science Stand-

ards [30]. In Geniventure, students are faced with the challenge of 

correctly breeding and studying virtual drakes, a model species of 

dragon [13]. In order to successfully produce the desired drake for 

each in-game exercise, students are required to learn and explore 

genetics concepts such as heredity, dominant and recessive traits, 

and protein-to-trait relationships.  

The game is comprised of 60 progressively difficult puzzle-like 

challenges that are divided into six distinct levels (Figure 1). Each 

level is divided into different in-game “missions”, and each mission 

is comprised of the individual challenges. The types of challenges 

presented to the student varies widely across the different levels. 

Geniventure is designed to be played in a linear sequence, but stu-

dents are allowed to attempt any challenge at any time, and also 

have the freedom to quit any challenge prior to completion.  

For the first three levels of Geniventure, students are faced with the 

task of modifying the genotype of a presented drake to match a tar-

get phenotype (Figure 1, Level 1). These challenges require the 

student to understand several different genetics concepts and also 

correctly predict attributes of the target phenotype based on the cur-

rent genotype. To determine whether the student correctly 

completed the challenge or not, the student selects the “Check” or 

“Hatch” button in the game’s interface to submit their answer. At 

this point, the student receives binary feedback on whether the ex-

ercise was successfully completed or not. If the exercise was not 

successfully completed at this time, the student is presented with a 

hint to help reach completion. There are three hints available per 

exercise, with each hint becoming progressively more direct, a vis-

ual cue is also made available to the student at this time. The student 

is allowed to make additional changes and resubmit their proposed 

phenotype until the correct solution is reached, or until the student 

exits the exercise. The progressive hint mechanism exists for many 

exercises in Geniventure, although the structure and conceptual 

challenges in each exercise may vary widely. Level 2 further ad-

vances the challenge of matching a genotype to a specified 

phenotype by introducing dominant and recessive traits (Figure 1, 

Level 2), while Level 3 increases the complexity of the exercise by 

adding factors such as scale color, proteins, and cell modification 

(Figure 1, Level 3). Levels 4, 5, and 6 introduce increasingly com-

plex concepts such as breeding, inheritance, and meiosis. Level 4 

introduces more complexity to the breeding process through the use 

of gametes, epistasis, and more challenging inheritance patterns 

(Figure 1, Level 4). Level 5 presents students with the test cross 

concept, a genetic method for determine an organism’s genotype 

                  

                  

Figure 1. Example challenges in Geniventure for the six gameplay levels. 



by crossing it with a fully recessive organism (Figure 1, Level 5). 

Level 6 builds on the prior concepts of the game while introducing 

additional concepts such as X-linked and polyallelic traits (Fig-

ure 1, Level 6). Certain levels introduce gameplay narratives or 

scaffolding that are not present in prior levels. For example, Level 

3 uses a “pod-release gate” interface which varies from Level 4’s 

“Gamete Builder”, Level 5’s “Test Cross” interface, and Level 6’s 

“Clutch Breeder”. As a result, this may result in different problem-

solving behavior distributions while labels for the new concepts are 

not available yet to train competency models and thus provides the 

motivation for investigating model generalization techniques such 

as domain adaptation or zero-shot learning.   

3.2 Data Collection 
Following Institutional Review Board (IRB) approval, the data cor-

pus was captured from 462 consenting students across seven high 

schools and a middle school located in the Eastern United States 

from suburban, rural, and urban locations. Teachers led several dif-

ferent classroom implementations of Geniventure where students 

engaged with the game during instruction periods across multiple 

days. Prior to the first learning session, students took a pre-test 

knowledge assessment consisting of 28 questions related to the ge-

netics concepts presented in the game. Following the conclusion of 

the last learning sessions, students took an identical post-test 

knowledge assessment addressing the same concepts to quantify 

students’ learning gain. The knowledge assessment was aligned 

with Geniventure’s competency model based on the ECD formula-

tion of the game, and the assessment was also validated through 

multiple rounds of expert review and cognitive interviews with stu-

dents. The knowledge assessment’s administration showed an 

internal consistency reliability of alpha=.873, and both the pre- and 

post-test were administered through the same online platform as the 

game. Logistical and technical issues were encountered during the 

data collections, which resulted in 38 students being removed from 

the data corpus due to missing knowledge assessment data and 108 

students being removed due to missing gameplay log data. As a 

result, the data corpus is comprised of gameplay log data from 316 

students. Student performance on the post-test (M=19.33, 

SD=6.131) was shown to be a statistically significant improvement 

over the pre-test (M=14.41, SD=5.826) according to a paired t-test 

(t(316) = 14.663, p<.01, Cohen’s d=.823). The distribution of com-

pleted challenges per student appears to be relatively normal 

(Figure 2), with most students completing between 50-150 chal-

lenges, with a range of 5 to 248 challenges (M=95.89, SD=33.63). 

3.3 Feature Engineering 
Features representative of students’ gameplay were engineered 

from the raw timestamped log files generated for each learning ses-

sion. These log files contained action-level information about 

students’ in-game activity, such as moves made within a challenge, 

number of attempts, and number of hints received. Because of the 

differences in gameplay mechanics across the different levels and 

challenges, we generated nine generic, challenge-level representa-

tions of student activity to generalize the feature engineering 

process. The generic representations were: (1) level number of 

challenge, (2) mission number of challenge, (3) challenge number, 

(4) total time spent on challenge, (5) number of in-game actions 

taken during challenge, (6) number of hints encountered during 

challenge, (7) number of correct in-game actions taken during chal-

lenge, (8) number of wrong in-game actions taken during 

challenge, and (9) student’s completion status of challenge (0: in-

complete, 1: complete with wrong answer, 2: complete with correct 

answer). From these representations, we also generate additional 

features to capture the temporal context of students’ activity across 

current and prior learning sessions. By accounting for all student 

challenges completed up until the current challenge, we calculated: 

(10) average time spent on individual challenges (seconds), (11) 

average in-game movements per challenge, (12) average correct in-

game movements per challenge, (13) average incorrect in-game 

movements per challenge, (14) average number of hints received 

per challenge, (15) successful challenge completion rate, (16) failed 

challenge completion rate, and (17) unsubmitted challenge rate. For 

each challenge, a feature vector was constructed using these 17 fea-

tures to serve as the input to the student competency models. It 

should be noted that these averages were computed separately 

across the “seen” and “unseen” gameplay data to protect against 

data leakage.  

4. EVIDENCE-CENTERED DESIGN 
Stealth assessment refers to non-intrusive methods for collecting 

evidence to induce student competency models [38]. This evidence 

captured from student interactions with various learning platforms 

is subsequently used to inform the evidence models, and subse-

quently competency models. The competency predictions 

generated from these models can be used to enable enhanced learn-

ing through adaptive mechanisms within the learning platforms. 

Stealth assessment can also be used to inform teachers and instruc-

tors in real time about students’ current learning trajectories to 

determine if dynamic interventions are necessary.  

Stealth assessment is grounded in Evidence-Centered Design 

(ECD), a principled approach to assessment design that describes 

high-level models of a conceptual assessment framework and de-

livery architecture for assessment delivery systems [27]. ECD 

affords assessment designers a method for reasoning about student 

knowledge or skills while adhering to psychometric principles [28]. 

Historically, ECD has been utilized to guide the creation of various 

knowledge assessments, and more recently has been used to inform 

the development of stealth assessment models deployed within 

game-based learning environments [14, 24, 37]. Our approach to 

stealth assessment with the Geniventure learning environment is in-

formed by the three following ECD models: 

Task Model: This model defines the exercises or activities that stu-

dents attempt to complete through interactions with the game-based 

learning environment. The task model within Geniventure is com-

prised of sixty distinct challenges that are split across the six in-

game levels. Each challenge presents students with various genetics 

concepts such as inheritance patterns, breeding, and genotype-phe-

notype relationships.  

Figure 2. Histogram of challenges attempted by  

students in Geniventure. 



Evidence Model: This model is shaped by the actions performed 

by each student within the game-based learning environment. This 

interaction data is representative of student behavior that is corre-

lated with learning outcomes pertaining to specific concepts 

presented in the learning platform. In this work, the actions a stu-

dent performs in Geniventure challenges, in addition to the 

outcome of each challenge, are represented by the evidence model 

and used to engineer features to train machine learning models used 

for predicting student mastery (or no mastery) of particular genetics 

concepts. The evidence model guides the competency model as it 

adjusts its modeling of students’ competencies as various in-game 

challenges are attempted. 

Competency Model: This model pertains to the genetics concepts 

that are presented within Geniventure and attempts to model the 

machine-interpretable evidence from the evidence model in order 

to accurately predict students’ competencies for each concept. The 

primary objective of the competency modeling is to optimally map 

the evidence model to the competency model for each student. 

These concepts are derived from classroom learning objectives and 

state science standards through of expert review. Students’ compe-

tencies are captured and quantified from a post-test knowledge 

assessment administered to each student following interactions 

with Geniventure. The competency model and the post-test assess-

ment are aligned using the same concepts presented in Table 1.  

To generate the ground-truth competency scores for each student, 

individual responses to the items on the post-test assessment are 

summed across the different genetics concepts, with a single con-

cept mapping to between one and six questions on the assessment. 

Each question considered in this study is graded as either 1 (correct) 

or 0 (incorrect). Competency scores are calculated for each concept 

by dividing the total number of correct responses for that concept 

by the total number of questions related to that concept. As a result, 

each competency score was within the range of 0 to 1 and serves as 

the target variables for the stealth assessment models. 

5. ZERO-SHOT LEARNING 
Zero shot learning (ZSL) is an extreme variation of unsupervised 

domain adaptation, which focuses on two distinct data sets ex-

tracted from two different domains and data distributions: a source 

domain and a target domain. The primary objective of unsuper-

vised domain adaptation is to induce a generalizable model that is 

capable of accurately classifying samples from the two domains in 

instances where labels for samples in the target domain are not 

available during model training. However, ZSL expands on this 

concept by assuming that neither data samples nor labels for the 

target domain are available during the training process. For this 

work, we split the Geniventure dataset into seen (S) and unseen (U) 

domains by partitioning between in-game levels because different 

levels address concepts that correspond to different competencies 

according to the ECD model. The text descriptions of each ECD 

concept serve as the link between the seen and the unseen classes, 

commonly referred to in ZSL as “semantic embeddings” or “attrib-

ute vectors” and are known for both seen and unseen classes at 

training time. The seen domain serves as the “source” domain and 

the unseen domain serves as the “target” domain. Therefore, the 

ECD concepts (C) for this data corpus (X: data, Y: class labels) can 

be divided and formally defined as follows: 

 𝑆 = {(𝑥, 𝑦, 𝑐𝑦) | 𝑥 ∈ 𝑋𝑆, 𝑦 ∈ 𝑌𝑆, 𝑐 ∈ 𝐶𝑆}                        (1) 

 𝑈 = {(𝑥, 𝑦, 𝑐𝑦) | 𝑥 ∈ 𝑋𝑈 , 𝑦 ∈ 𝑌𝑈 , 𝑐 ∈ 𝐶𝑈}                       (2) 

By framing the ECD competency modeling as a ZSL task, we seek 

to predict student competencies on unseen levels and concepts in 

situations where no prior gameplay data is available for those con-

cepts, an example of the “cold-start problem”. For example, if we 

have concepts C1-C10 where C1-C7 have been previously pre-

sented to students in Geniventure and gameplay logs have been 

captured for these concepts (i.e., seen), we seek to use this available 

data to induce generalizable competency models that accurately 

predict student outcomes on concepts C8-C10, even though they 

   Table 1. In-game genetics concepts from ECD competency model. 

Concept  Concept Description Questions 

C1 Only one dominant allele is needed to produce the dominant trait. 3 

C2 Two recessive alleles are needed to produce a recessive trait. 2 

C3 Create or select parental gametes to create an individual offspring with a specific phenotype.  4 

C4 Set parental genotypes to produce a specific pattern of offspring. 6 

C5 Use patterns in the phenotypes of a group of offspring to predict the genotype of the parents. 5 

C6 For some traits primarily influenced by a single gene, both alleles will have some effect, with neither 

being completely dominant. 
2 

C7 Breed with a recessive animal to determine an unknown genotype (testcross). 2 

C8 Different versions of a gene correspond to different versions of a specific protein. 2 
C9 Proteins do work or have jobs to do in cells. 1 

C10 Proteins are nanomachines; different proteins do different jobs. 1 

C11 The function of a protein is determined by its shape. 1 

C12 Different versions of a specific protein have different structures and different functions. 1 

C13 Some traits have multiple alleles, which can form a ranked series in terms of dominance. 2 

C14 Genes on the X chromosome are referred to as X-linked. Males receive only one copy of the X chro-

mosome and pass on their X only to their daughters. 
1 

C15 Working from the phenotype, determine possible genotypes for an organism. 2 

C16 Use a genotype to predict the phenotype for an organism. 2 



have not been presented to any students and there is no prior game-

play logs or competency scores for these concepts (i.e., unseen). 

This allows for more generalizable student competency modeling 

and also enables ECD-based stealth assessment in circumstances 

where there are no prior ground-truth competency labels, such as 

when post-tests may be unavailable or impractical to administer. 

Examples include informal learning environments such as muse-

ums, or if a concept or level within a game-based learning 

environment is being deployed for the first time.  

Because both the data and labels are not available at training time, 

a form of semantic data must be available for the ZSL framework 

to link between the seen and unseen domains. In this particular case, 

we use the text-based descriptions of each of the concepts to gen-

erate concept mastery embeddings used as conditional inputs to the 

generative ZSL models (Section 5.1). This allows the generative 

model to learn the non-linear relationships between the concept text 

embeddings, student competencies, and student gameplay patterns. 

As a result, the generative model generates synthetic gameplay data 

representative of each of the seen and unseen concepts which en-

hances the training and generalizability of the competency models.  

The embedding representations for the genetics concept descrip-

tions are generated using Sentence-BERT (S-BERT) [33]. S-BERT 

expands upon the original BERT model [10] by implementing the 

BERT model within a Siamese network architecture to facilitate the 

generation of fixed-length embedding vectors of sentences that are 

compared using distance metrics such as cosine similarity. This al-

lows the S-BERT model to generate sentence-level embedding 

representations instead of single-word embeddings, making this 

model suitable for sentence descriptions of the genetics concepts. 

Additionally, the use of a common pre-trained language model such 

as S-BERT improves the generalizability of our approach, com-

pared to manually crafted representations such as knowledge 

graphs. 

5.1 Generative Modeling 
To address the absence of training data and labels for the unseen 

concepts, we use semantic data (i.e., text descriptions of all con-

cepts) to condition and train deep generative models, which 

facilitate data augmentation for this task. By employing text em-

beddings of the seen concept descriptions to condition the 

generative models, we can train the models to map the latent repre-

sentation of each concept to particular patterns and features in the 

students’ gameplay data for the seen concepts. We can subse-

quently generate synthetic data to represent student gameplay for 

the unseen concepts using only the embeddings of the descriptions 

for each unseen concept. The augmented data is used to further train 

the competency models to increase the predictive performance dur-

ing inference for the unseen concepts’ associated gameplay data.  

Generative adversarial networks (GANs) have been frequently 

used as a data augmentation method due to their ability to generate 

high-fidelity data from noise vectors through zero-sum training of 

two deep learning components: a generator and a discriminator 

[15]. The purpose of the generator G is to generate synthetic data 

�̃� based on a random probability distribution pz, where z represents 

the latent space sampled by G so that �̃� = G(z), z ~ pz. The objective 

is that �̃� deceives the discriminator, whose purpose is to accurately 

distinguish between this “fake” data and real samples from the orig-

inal data. The discriminator’s training loss from this binary 

classification is backpropagated through the generator and the dis-

criminator, with the objective of both losses eventually reaching a 

Nash equilibrium. However, quantifying GAN convergence is an 

open-ended area of research and GAN models are often susceptible 

to vanishing or exploding gradients, mode collapse, and other in-

stabilities during the training process. One approach to mitigating 

this issue is a conditional GAN [25], which extends a traditional 

GAN architecture by providing associated data (“conditions”) to 

both the generator and discriminator’s input vectors. An example 

of such a condition is a class label or attribute that is associated with 

the desired augmented output of the generator. For this particular 

case, we use the S-BERT embedding vectors of the associated con-

cepts as the conditions to our GAN model to generate synthetic 

gameplay data associated with both the seen and unseen concepts.  

Traditional GAN architectures attempt to reach convergence by 

minimizing a divergence function such as the Jensen-Shannon (JS) 

divergence, which helps quantify the distances between two prob-

ability distributions pg(x) and pr(x), where pg is the model 

distribution of the generator and pr is the distribution of the real 

data. However, a common issue with these divergence metrics is 

that there exist sequences of distributions that do not converge un-

der the JS divergence or where the gradient of the divergency 

eventually disappears, effectively halting the training of the gener-

ator during backpropagation. To address this issue, an alternative 

GAN architecture (W-GAN) was proposed that utilizes the Was-

serstein distance, otherwise known as the “Earth Mover’s 

distance”, as a means to quantify the generator loss during training 

(Eq. 3) [2]. This metric is desirable as it is continuous and differen-

tial almost everywhere under the Lipschitz condition: 

 𝑊(𝑝𝑟 , 𝑝𝑔) =  inf
𝛾∈⊓(𝑝𝑟,𝑝𝑔)

𝔼(𝑥,𝑦)~𝑦[∥ 𝑥 − 𝑦 ∥]                   (3) 

where ⊓ (𝑝𝑟 , 𝑝𝑔)  represents all joint distributions with marginal 

distributions of 𝛾(x, y) are 𝑝𝑟(𝑥) and 𝑝𝑔(𝑦), respectively. Because 

this equation is highly intractable, we use the Kantorovich- 

Rubinstein duality to simplify the calculation to be: 

 𝑊(𝑝𝑟 , 𝑝𝑔) =  sup
|𝑓|𝐿≤1

𝔼𝑥~𝑝𝑟
[𝑓(𝑥)] − 𝔼𝑥~𝑝𝑔

[𝑓(𝑥)]         (4) 

As a result, we enforce a 1-Lipschitz constraint to the discriminator 

component. As a means to enforce this 1-Lipschitz constraint 

within the W-GAN, we introduce a concept known as “weight clip-

ping” to the discriminator. This involves constraining the weights 

in the discriminator to be between the range of [-c, c], with c being 

treated as an additional training hyperparameter. However, weight 

clipping is often volatile with respect to c and can cause W-GANs 

to converge much more slowly if c is too large but can also intro-

duce vanishing gradients if c is too small. An alternative to the 

weight clipping is a “gradient penalization” method which proposes 

a penalty term added to the loss function that is parameterized by a 

penalty coefficient λ [17]. The gradient penalty term is based on 

weighted random sampling between the real and the generated sam-

ples from the generator. As a result, the final objective of our 

gradient-penalized W-GAN model (WGAN-GP) becomes the min-

imization of the following loss function for the discriminator D: 

ℒ𝑑𝑖𝑠(𝑥, �̃�; 𝜃𝑑𝑖𝑠) =                                                                                         

                   𝐷𝜃𝑑𝑖𝑠
(�̃�) − 𝐷𝜃𝑑𝑖𝑠

(𝑥) + 𝜆(∥ ∇𝑥𝐷𝜃𝑑𝑖𝑠
(�̂�) ∥ −1)2             (5) 

where 𝜃𝑑𝑖𝑠 represents the parameters of the discriminator, 𝜆 is the 

gradient penalty coefficient, and �̂� is sampled from 𝜖𝑥 + (1 − 𝜖)�̃� 

with 0≤ 𝜖 ≤ 1, effectively representing any points sampled be-

tween the probability distributions, pg and pr. 

We employ the WGAN-GP approach as a means to train a genera-

tor to produce realistic synthetic data representing students’ 

gameplay for unseen Geniventure levels in order to induce student 

competency models for the associated genetics concepts that have 



not been previously introduced. This model was selected due to is-

sues with vanishing gradients during empirical evaluations of 

traditional GANs and WGANs within our ZSL framework. Addi-

tionally, we use a conditional variation of the WGAN-GP model in 

order to effectively map the latent representations of the augmented 

data representations to the word embeddings of the text-based de-

scriptions of each genetics concept. This allows the synthetic data 

generation to be guided by the concepts associated with each data 

sample from the data corpus, while allowing for data to be gener-

ated based on the concepts associated with the unseen game levels.  

6. METHODOLOGY 
Our ZSL approach is evaluated across two different data splits. The 

first split involves removing any information from the ECD models 

associated with Level 6 (the last level) from the data corpus, which 

includes student gameplay (Evidence Model) from the challenges 

within the level (Task Model), as well as the student post-test scores 

(Competency Model) to items associated with genetics concepts as-

sociated with Level 6 (C13 and C14 serving as unseen concepts). 

The second split involves treating Level 5 and Level 6 as the “un-

seen” domain, which involves concepts C7, C13, and C14. The 

competency models are initially trained using the student gameplay 

features from the “seen” domain and a median split of the combined 

competency scores from the post-test items corresponding only to 

concepts associated with the “seen” Geniventure levels. To evalu-

ate the ZSL performance, each competency model is evaluated 

using the gameplay from the unseen levels to predict student com-

petencies from the post-survey items associated with the unseen 

concepts. This process is implemented to protect against data leak-

age, ensuring that the student competency models are induced using 

only data and labels from the seen levels as well as unseen, syn-

thetic labeled data during the training phase, and any actual data or 

labels from the unseen concepts and levels are only presented to 

each competency model during the inference phase (Figure 3, C).  

6.1 Student Competency Models 
Five different classifiers were investigated as student competency 

models: a majority classifier, support vector machine (SVM), ran-

dom forest (RF), Naïve Bayes (NB), logistic regression (LR), and 

feedforward neural network (FFNN).  Each of the models were im-

plemented as binary classifiers to predict “high” and “low” 

categories of student performance based on a median split of the 

sum of the post-test score for each question related to either the seen 

or unseen concepts. Each of the models was evaluated using stu-

dent-level cross-validation, to ensure against data leakage across 

validation folds. The median of the competency scores were deter-

mined based on the scores of the students within the training folds 

only as another means to protect against data leakage.  

6.2 Model Evaluation 
Hyperparameter tuning was performed using three-fold inner cross-

validation within each iteration of the ten-fold outer cross-valida-

tion. The hyperparameters that were optimized were the 

regularization parameter and kernel (support vector machine; 

SVM), regularization parameter (logistic regression, LR), number 

of estimators (random forest; RF), and number of layers and nodes 

(feedforward neural network; FFNN). Hyperparameter tuning was 

not performed on the Naïve Bayes classifier and the majority clas-

sifier. Because multiple data samples exist per student and there is 

only one competency label per student, we generate a single stu-

dent-level prediction by forward propagating all feature vectors for 

a given student through a trained competency model and averaging 

across all predictions for that student. 

Because the use of the gradient penalty in the WGAN-GP stabilizes 

the training process and mitigates the need for extensive hyperpa-

rameter tuning, we focus only on tuning the number of nodes in the 

two hidden layers of the generator and discriminator using layer 

sizes of 32 or 64. This hyperparameter tuning also occurred within 

the nested cross-validation process described previously. The 

WGAN-GP’s learning rate was 0.001, with a dropout rate of 0.5 

and hyperbolic tangential activation functions. The WGAN-GP 

(and FFNN competency model) was trained using 100 epochs 

while utilizing early stopping based on the model’s performance on 

the validation fold with a patience of 10 epochs. The noise vector 

size for the WGAN-GP was 32, and the number of generated syn-

thetic data samples was set to be 50% of the original training dataset 

size. Because the concept mastery embedding vectors obtained 

                      

             

          
       

            
       

          

          
       

        
          

            

        
          

         

            

        
          

          
       

            
       

          
       

         

            
       

         

                                   

  

  

  

Figure 3. Visualization of data augmentation in generative zero-shot learning framework. (A) training process for con-

ditional WGAN-GP augmentation model, (B) training process for student competency models with augmented data for 

unseen concepts, and (C) inference of trained competency model for real student gameplay on previously  

unseen concepts. 



from S-BERT are high in dimensionality, we perform Principal 

Component Analysis on the embeddings to reduce the size to 32 

components. The data was standardized within each cross-valida-

tion fold by subtracting each feature’s mean and dividing by the 

standard deviation of each feature as determined by the training 

folds.  

To represent the students’ competencies within the semantic em-

beddings, a text description for each concept was preceded with 

either “mastery of” or “no mastery of” based on each student’s post-

test performance relative to the median for each concept and these 

substrings were concatenated together to form a single comprehen-

sive text string representing the student’s mastery of each of the 

seen concepts. For example, a concept mastery sentence for a single 

student might be “Mastery of only one dominant allele is needed to 

produce the dominant trait. Non-mastery of two recessive alleles 

are needed to produce a recessive trait. Mastery of …” and so on 

for the seen concepts. These text representations are then passed 

through the pre-trained S-BERT word embedding model and, fol-

lowing the PCA dimensionality reduction described previously, are 

used as the conditional features for the generative models. To gen-

erate synthetic data following the generative model training, a 

similar process is followed to generate the text representations us-

ing the descriptions of the unseen concepts. As no student 

competency data actually exists for these unseen concepts cur-

rently, the preceding phrase “mastery of” or “no mastery of” is 

determined using a Bernoulli probability distribution where proba-

bility p=0.5. This allows the generative model to produce synthetic 

gameplay data representative of many possible mastery/non-mas-

tery combinations of student competencies for the unseen concepts, 

thus enhancing the generalizability of the competency models for 

the unseen concepts.  

To evaluate the performance of the WGAN-GP as the preferred 

ZSL generative model, we also investigate two alternatives: a con-

ditional variational autoencoder (C-VAE) and a “target-only” 

baseline. The target-only baseline refers to a competency model 

that performs the inference on the data for the unseen Geniventure 

levels but does not undergo any form of ZSL-based data augmen-

tation, which is a reflection of the target-only baseline in prior 

adversarial domain adaptation work by Tzeng et al. [43]. C-VAEs 

are similar to conditional GANs with regards to the use of condi-

tional attributes [39]. A traditional VAE contains two components: 

an encoder and a decoder. The encoder learns latent representations 

of input data while the decoder seeks to reconstruct the original di-

mensionality of the data from the latent space representation. The 

VAE constrains the latent space representation to follow a pre-de-

termined probability distribution by minimizing a loss function that 

consists of a reconstruction term and a divergence term. The recon-

struction term quantifies the reconstruction error of the decoder 

component through a loss function such as root mean squared error 

and the divergence term quantifies the distance between the given 

probability distribution and the latent representation distribution. 

The Kullback-Leibler (KL) divergence is often used for this pur-

pose. The conditional features are concatenated to the input features 

for the encoder as well as the latent representation vector that is 

passed from the encoder to the decoder. Because the encoder re-

duces the latent representation to a parameterized probability 

distribution, this allows the decoder to generate augmented data 

from this distribution.  

7. RESULTS AND DISCUSSION 
The ZSL approach was evaluated across two splits as described in 

Section 5. The results for Split 1 is shown in Table 2, while the 

results for Split 2 is shown in Table 3. We select F1 Score and ac-

curacy as our primary metrics to account for the relatively balanced 

class distribution due to the median split, while Area-Under-Curve 

(AUC) and Cohen’s Kappa [8] are used as secondary metrics. The 

optimally performing generative ZSL model for each split in terms 

of F1 Score is shown in bold. All evaluations were performed on a 

NVIDIA GeForce GTA 1080 TI GPU. Each evaluation took up to 

100 minutes to compete the 10-fold cross-validation sequence.  

In terms of the primary evaluation metrics, the WGAN-GP model 

appeared to induce the highest performance from the competency 

models across both data splits, outperforming both the C-VAE and 

the target-only baseline. It was noted that the performance across 

all models decreased for the split containing two “unseen” game-

play levels (Table 3) compared to one (Table 2), which is expected 

due to the decrease in training data available as well as the in-

creased variance in the “unseen” dataset. However, the results 

overall point to the enhanced performance of the student compe-

tency models when additional synthetic data is generated from the 

WGAN-GP as a means to improve the training process. 

Additionally, it was noticeable that the margin between the 

WGAN-GP and the other ZSL configurations widened from Split 1 

to Split 2, which points to the relative scalability of our approach 

as the number of unseen concepts and in-game levels increase. It 

was also noted that the C-VAE was the lowest performing genera-

tive model and was also outperformed by the target-only baseline 

approach for both data splits. This is noteworthy as VAEs, includ-

ing conditional variations, are the generative approach for prior 

generalized ZSL work [26, 44, 45]. 

However, we note in these prior works, the VAE models were 

trained on a multimodal dataset, which provides a more data-rich 

perspective compared to the stealth assessment data in this work. 

Additionally, although the work in [26] used a conditional variation 

of the C-VAE, the generative model appeared to suffer from mode 

collapse, a common issue in the training of generative models. 

However, one benefit of the WGAN (and the gradient-penalization 

modification) is additional mitigation against mode collapse during 

training, a possible explanation of why the WGAN-GP achieves the 

highest performance in our evaluations. A primary difference in 

this architecture is that the loss of the decoder in the C-VAE is the 

summation of the KL divergence and the reconstruction loss, com-

pared to the WGAN component which strictly uses the Wasserstein 

divergence metric. This has potential for allowing the generative 

model to map between the semantic feature space and the aug-

mented data more effectively, particularly as the augmented data 

from the WGAN-GP is restored to the original dimensionality in-

stead of a latent space representation.  

To further investigate the performance of the generative ZSL ap-

proach, we generate the confusion matrices for each of the models 

across both data splits (Figures 4 and 5). The confusion matrices 

are based on the inferences of each of the models based on the held-

out test set within each outer cross-validation iteration, for a total 

of 316 student-level predictions. It should be noted that the results 

in Tables 2 and 3 were calculated across the outer cross-validation 

folds while the analyses conducted in Figures 4-7 were calculated 

across the entire dataset. Based on the results in the confusion ma-

trices, we observe that high-performing students are more 

accurately classified compared to low-performing students. Addi-

tionally, it appears that the student competency models produced 

noticeably more false negatives as the unseen concepts increased. 

This occurred across all three evaluated ZSL approaches. In the 

case of the target-only baseline and the WGAN-GP model, the stu-

dent competency models were able to retain a relatively similar  



Table 2. Results of ZSL framework for Split 1. 

ZSL Model Classifier F1 Score Accuracy AUC Kappa 

Target-Only SVM 0.689 0.642 0.689 0.257 

CVAE RF 0.668 0.642 0.675 0.275 

WGAN-GP SVM 0.709 0.656 0.692 0.284 
 

Table 3. Results of ZSL framework for Split 2. 

ZSL Model Classifier F1 Score Accuracy AUC Kappa 

Target-Only SVM 0.671 0.623 0.703 0.249 

CVAE FFNN 0.612 0.578 0.700 0.152 

WGAN-GP SVM 0.696 0.652 0.696 0.281 

performance for correct identification of low-performing students 

across both data splits, but the C-VAE led to significantly decreased 

detection for low-performing students when evaluating from Split 

1 to Split 2. Additionally, it is noticeable that the WGAN-GP was 

able to maintain relatively consistent performance for prediction of 

both high-performing and low-performing students across both 

data splits, which demonstrates the generalizability of this particu-

lar generative model. 

To further evaluate the predictive value of the semantic embeddings 

of the student competencies with the various genetics concepts, we 

visualize the embeddings from each of the students using the prin-

cipal components generated from the S-BERT embeddings. Using 

the t-distributed Stochastic Neighbor Embedding (t-SNE) plots for 

the low-performing and high-performing students (Figure 6), we 

are able to detect whether there are salient or underlying predictive 

patterns in the text representations of each student’s mastery of in-

dividual genetics concepts. Despite the use of PCA for 

dimensionality reduction for the original S-BERT embeddings, the 

representations of the semantic embeddings contain high dimen-

sionality and thus poses a challenge for visualization. t-SNE 

attempts to address this issue by producing a representation of high-

dimensionality data within 2D coordinate space. This is performed 

by constructing joint probability distributions to model the similar-

ity between the original data points, and subsequently attempts to 

minimize the KL divergence between these probability distribu-

tions and other probability distributions within 2D coordinate 

space. This process is expanded to distinguish between low-per-

forming and high-performing students for the seen and unseen 

concepts (Figure 7). Figures 6 and 7 are generated using Split 2. 

Figure 6 indicates that the use of semantic embedding representa-

tion of the students’ masteries of various genetics concepts may 

provide predictive context to the generative ZSL models when used 

as a conditioning input during training. Noticeably, there appears 

to be distinct separation between the semantic embeddings for 

high-performing students and low-performing students when cal-

culated using all competencies, which points to the predictive value 

of using these embeddings for stealth assessment tasks. To provide 

analysis more similar to the ZSL framework, the semantic embed-

dings are generated for each group of low-performing and high-

performing students by separating the embeddings for seen and un-

seen concepts (Figure 7). In this particular case, there appears to be 

notable separation between clusters of low-performing students and 

high-performing students, with overlap between the high-perform-

ing students across both seen and unseen concepts. As a result, this 

indicates that the use of the semantic embeddings alongside condi-

tional generative modeling provides additional predictive value to 

guide the generation of augmented data for different students based 

on prior competencies. One aspect of note for Figure 7 is that the 

               

                       

Figure 4. Confusion matrices for baseline and generative ZSL models (Split 1). 

               

                       

Figure 5. Confusion matrices for baseline and generative ZSL models (Split 2). 



plots of “High Unseen” and “Low Unseen” are based on the 

ground-truth competencies for the students on the unseen concepts, 

while in practice, this data is not available for training the stealth 

assessment models and the semantic representations are used by as-

signing “high” or “low” mastery of each concept at random and 

then generating a synthetic binary “label” based on whether at least 

50% of the unseen concepts were labeled “high” or not. This allows 

the generative model to be conditioned on 2n different combina-

tions of student concept mastery where n is the total number of 

unseen concepts, and this allows the model to be trained using a 

higher number of mastery combinations than what is often availa-

ble in datasets captured from game-based learning environments.  

There are limitations to this work that should be noted. Although 

the zero-shot learning framework was based on seen and unseen 

domains across differing gameplay levels, the two domains were 

grounded in the same game-based learning environment. To further 

investigate the generalizability of the ZSL framework, our ap-

proach should be evaluated using unseen data and classes from 

entirely different learning environments. Additionally, Split 1 and 

2 removed two and three concepts out of sixteen, resulting in 12-

18% of the total data being treated as unseen data. Evaluations with 

more unseen in-game levels would provide more insight into the 

performance of our approach as the unseen domain increases. The 

class label for the seen and unseen domains were both based on 

binary labels of student mastery, but our method should also be 

evaluated in scenarios where the labels differ more widely (e.g., an 

additional unseen class in multi-class prediction). The binary labels 

were utilized to convert our work to a classification task, but the 

level of granularity is much higher compared to regression, which 

can negatively impact the adaptability of learner-sensitive mecha-

nisms by grouping low-performing students and students 

performing near the median together. It was also noted that, as the 

unseen domain increased, the number of false negatives increased, 

which could lead to high-performing students receiving unneces-

sary interventions in user-adaptive settings.  

8. CONCLUSION 
Game-based learning holds significant potential for stealth assess-

ment of student performance and knowledge acquisition. The 

capability to predict student mastery of particular concepts within 

game-based learning environments can enable mechanisms such as 

adaptive hint generation, personalized gameplay narratives and 

scaffolding, and gameplay-sensitive interventions in real-time. 

However, stealth assessment models often necessitate large 

amounts of data and labels, which presents logistical and scalability 

challenges. This prohibits the deployment of pre-trained stealth as-

sessment models in domains where prior data and labels have not 

been collected, and questions remain regarding generalizability to 

different domains and educational content. 

We propose a generative zero-shot learning framework to address 

the above issues. By using conditional generative models, we har-

ness the predictive capabilities of textual representations of student 

mastery of different educational concepts. These representations 

are able to guide a Wasserstein Generative Adversarial Network in 

generating synthetic student gameplay data representative of in-

game levels and genetics concepts that have not been previously 

presented and for which no prior gameplay data or student compe-

tency data actually exists. By mapping text embeddings of genetics 

concepts to the student gameplay data through the generative 

model, the resulting augmented data improves the predictive capac-

ity of stealth assessment models for predicting student competency 

across different hidden gameplay levels. Our proposed model is 

shown to outperform an alternative conditional generative model 

and a baseline that excludes the zero-shot learning element. This 

indicates the potential for increasing the generalizability of student 

stealth assessment models through the generative data augmenta-

tion approach and for deploying pre-trained stealth assessment 

models in digital learning environments presenting new educa-

tional concepts, problem-solving tasks, and in-game levels. 

There are many promising avenues for future work. Notably, our 

work focuses on zero-shot learning within a single game-based 

learning environment, and the natural extension of this work is the 

evaluation of our framework across different learning environ-

ments instead of separate in-game levels. Additional 

experimentation with a higher ratio of “unseen”-to-“seen” concepts 

would provide more insight into how the ZSL framework’s perfor-

mance is maintained as the amount of “unseen” data increases in 

size and variance. More complex modeling for the stealth assess-

ment, language embeddings, and generative models may provide 

additional benefit for the predictive capacity of our framework. Fi-

nally, the effectiveness of our approach should be implemented 

alongside student-adaptive interventions to determine the impact 

on learning outcomes and processes within run-time environments.  
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Figure 6. t-SNE visualization of student competency S-BERT 

embeddings across all concepts.  

Figure 7. t-SNE visualization of student competency S-BERT 

embeddings across high/low and seen/unseen splits.  
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