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ABSTRACT 
In recent years, game-based learning has shown significant promise 
for creating engaging and effective learning experiences. 
Developing models that can predict whether students will struggle 
with mastering certain concepts could guide adaptive support to 
assist students with mastering those concepts. Game-based learning 
environments offer significant potential for unobtrusively assessing 
student learning without interfering with gameplay through stealth 
assessment. Prior work on stealth assessment has focused on a 
single machine learning technique such as dynamic Bayesian 
networks or long short-term memory networks; however, a single 
modeling technique often does not guarantee the best predictive 
performance for all concepts of interest. In this paper, we present a 
hybrid data-driven approach to stealth assessment for predicting 
students’ mastery of concepts through interactions with a game-
based learning environment for introductory genetics. Stealth 
assessment models utilize students’ observed gameplay behaviors 
using challenge- and session-based features to predict students’ 
learning outcomes on identified concepts. We present single-task 
and multi-task models for predicting students’ mastery of concepts 
and the results suggest that the hybrid stealth assessment 
framework outperforms individual models and holds significant 
potential for predicting student competencies. 

Keywords 
Stealth Assessment, Predictive Student Modeling, Game-based 
Learning, Multi-Task Learning 
1. INTRODUCTION 
Recent years have seen growing interest in game-based learning 
environments because of their potential for creating engaging and 
effective learning experiences [7, 43]. Researchers have 
investigated game-based learning environments in a wide array of 

domains, including mathematics [13, 40], computational thinking 
[4, 16], and science [2, 10, 30].  
While a common gameplay design adopted by many game-based 
learning environments is providing students with a fixed sequence 
of levels with increasingly difficult challenges per concept, game-
based learning environments could provide individualized 
sequences of challenges and just-in-time support, so that students 
can focus on gameplay at the edge of their knowledge and skills 
and remain engaged throughout the learning experience [20, 44]. 
To achieve this goal, game-based learning environments should be 
equipped with the ability to detect when students are struggling or 
have gaps in their knowledge and take appropriate action to tailor 
their learning experience [33]. Presenting in-game challenges 
adaptively tailored to individual students’ knowledge can play a 
crucial role in supporting mastery learning and promoting 
engagement while effectively addressing problems with a one-size-
fits-all approach.  

With recent advances in machine learning, data-driven approaches 
using students’ in-game behaviors have enabled the automatic 
assessment of students’ evolving competence [1, 21] and the 
modeling of mind wandering [19], wheel spinning [25], and 
quitting behaviors [12], all of which are associated with negative 
learning outcomes. A robust modeling of student behaviors can 
guide students from undertaking a challenge that is beyond their 
capabilities as well as facilitate their engagement through 
individualized learning activities tailored to their competencies for 
knowledge and game-playing skills.  

There is now a sizable literature on stealth assessment in game-
based learning [34]. Stealth assessment robustly measures student 
learning without disrupting engagement by embedding unobtrusive 
assessments within game mechanics, offering real-time non-
disruptive assessment [35]. Building on evidence-centered design 
(ECD) [24], which provides a systematic approach to developing 
knowledge assessments, stealth assessment examines student 
interaction data (i.e., evidence model) with in-game challenges 
(i.e., task model) to provide real-time behind-the-scenes 
measurement of students’ learning processes and outcomes (i.e., 
competency model) [22, 36]. Specifically, students’ learning is 
inferred by analyzing low-level sequences of observed problem-
solving behaviors that manifest competencies for knowledge and 
skills without conducting explicit formative assessments. 
Inferences made by stealth assessment models can inform effective 

 



scaffolding strategies (e.g., adaptive challenge selection, tailored 
problem-solving support) for individual learners in a timely and 
contextually appropriate manner [29, 36]. It can also guide teachers 
to potential pedagogical adaptations or support integration with 
additional curricular activities, which are core components of 
distributed and integrated scaffolding [26, 28, 39].  

In this work, we investigate stealth assessment with Geniventure, a 
game-based learning environment for introductory high school 
genetics learning. We present modeling approaches including 
single-task and multi-task random forest and recurrent neural 
network-based regression models for predicting students’ 
competencies, whose labels were derived from students’ post-test 
scores on genetics-focused concepts. In contrast to much previous 
work on stealth assessment that used a single machine learning 
technique, we present a hybrid stealth assessment framework that 
effectively leverages predictive capacities of all the explored 
modeling approaches. We compare the models’ fitness to the data 
to gain insight into which combinations of models perform 
optimally across all the concepts, as well as which models are 
effective for individual concepts. The hybrid stealth assessment 
framework outperforms individual computational techniques with 
respect to predictive performance for student concept-level 
competencies. 

2. RELATED WORK 
Intelligent game-based learning environments simultaneously 
leverage capabilities of digital games to motivate students’ learning 
through engaging narratives, virtual environments and intelligent 
tutoring systems (ITSs) to foster students’ learning through 
adaptive scaffolding and context-sensitive feedback [15]. These 
environments facilitate learning through individualized challenges, 
narratives, feedback, and problem-solving support [30, 35, 42]. 
Students’ fine-grained, sequential game trace data has been used in 
a wide range of student modeling tasks such as inferring the level 
of competency [22, 35], predicting affective states [3, 31], and 
recognizing students’ learning goals [23]. In comparison to single-
task learning investigated in much of previous student modeling 
work, recent years have seen a growing interest in the use of multi-
task learning, a regularization method that exploits commonalities 
and differences across related tasks for improved generalizability. 
Multi-task learning has been examined for various student 
modeling tasks such as predicting student competencies in 
programming in a massive open online course (MOOC) [27] and 
modeling student performance in a game-based learning 
environment for middle-grade microbiology education [9], which 
demonstrated improved predictive performance relative to the 
single-task modeling approach. Similarly, Chaudhry et al. used 
multi-task modeling with both hint usage and knowledge tracing to 
induce models of students using online tutoring systems [5]. 
Stealth assessment is methodologically grounded in evidence-
centered design (ECD), which was proposed to construct 
educational assessments in terms of evidentiary arguments [24]. 
ECD features task, evidence, and competency models to conduct 
probabilistic reasoning about knowledge, skills, and abilities of 
students utilizing evidence captured from interactions with learning 
tasks. Stealth assessment conducts real-time processing of data 
derived from these three ECD models that informs intelligent, 
adaptive game-based learning environments through devising 
robust evidence and competency models as well as creating task 
models that effectively develop the competencies [20]. While 
human expert-designed Bayesian networks have been examined as 
the core computational method for both competency and evidence 

models for stealth assessment [37], another body of work has 
investigated an assessment pipeline that does not require costly 
domain knowledge engineering. Falakmasir et al. investigate the 
use of hidden Markov models (HMMs) to model student 
proficiency within educational games [8]. The log-likelihoods are 
approximated by the HMMs using sequential gameplay data, with 
the difference between the likelihoods serving as the independent 
variable for post-test prediction models. The authors of this work 
use linear regression to predict the student’s post-test scores. There 
has also been growing interest in deep neural network architectures 
due to their capability to learn salient features from low-level, 
sequential data captured from interactions with task models [1, 20]. 
Long short-term memory network-based stealth assessment models 
have demonstrated significant promise by outperforming 
competitive baselines with respect to predictive performance of 
inferring students’ competencies, while effectively eliminating the 
need to manually craft evidence rules and evidence models. In 
contrast to much of previous research, our work presents a hybrid 
stealth assessment framework that utilizes a suite of competency 
models to optimally harness distinguished predictive capacity 
yielded by a range of single-task and multi-task stealth assessment 
models.  

3. DATASET 
 Geniventure Learning Environment 

To evaluate the performance of our hybrid stealth assessment 
framework, we use gameplay interaction log data collected from 
students engaged with a game-based learning environment for 
introductory genetics for middle school and high school students 
(students ages 11-18 years), Geniventure. The design of the game 
is guided by core genetics-based concepts that align with the Next 
Generation Science Standards [38]. Geniventure engages students 
in exploring heredity, dominant and recessive traits, and the 
protein-to-trait relationship by breeding and studying drakes, a 
model species for dragons [18].   

The game consists of 60 increasingly difficult puzzle-like 
challenges across 6 levels (Figure 1). Each of the challenges is part 
of a “mission”, with each level containing multiple missions. The 
genetics concepts that the game addresses are presented through a 
variety of challenge types. While the game was designed to be 
played through in a linear fashion, students have the freedom to 
attempt challenges at any level and are allowed to quit a challenge 
at any time.  
In the first half of the game, students are asked to change the drake’s 
genotype to match a target phenotype (Figure 1, Level 1). To 
successfully complete these problem-solving challenges, students 
must understand several genetic concepts and be able to infer the 
phenotype of their drake from its genotype. Once students feel they 
have the correct genotype, they click the “Check” or “Hatch” button 
to submit their answer. If the drake they create matches the target 
drake, the challenge is successfully completed. Otherwise, the 
game provides the student with three progressively more directed 
levels of hints, as well as a visual cue, and allows them to continue 
to make further changes to the alleles until they quit or successfully 
complete the challenge. This model of counting moves and giving 
feedback in the form of hints is carried through the subsequent 
levels of the game, even though the challenge types vary. Other 
challenges instruct the user to match a phenotype to a given 
genotype, following a reversed procedure from Level 1 (Figure 1, 
Level 2), and also introduce scale color and other additional 
complexities to the challenges (Figure 1, Level 3). 



 The latter half of the game introduces more difficult concepts such 
as breeding and inheritance. Through several scaffolded 
challenges, students breed parent drakes with the goal of matching 
target offspring (Figure 1, Level 4). The tasks grow increasingly 
complex as students progress through this level, eventually 
culminating in a challenge requiring students to breed two parents 
to produce offspring that match a given drake. Students are also 
introduced to test cross, a genetic method for determining the 
genotype of one organism by crossing it with a fully recessive 
organism (Figure 1, Level 5). Finally, the last level introduces traits 
with more complex inheritance patterns, such as X-linked and 
polyallelic traits (Figure 1, Level 6). This level contains challenges 
illustrating concepts from all of the preceding levels such as allele 
target match, egg drop, meiosis, breeding, and test cross.  

As previously mentioned, students can validate their work at any 
time and are provided with system-generated hints based on their 
perceived understanding of the genetics concepts if necessary. Hint 
usage, as well as time spent on challenges, and the students’ success 
rate during their respective gameplay sessions, serves as the 
foundation for the features used to train the competency models. 

 Data Collection 
The dataset was collected from 462 students from seven high 
schools and one middle school located in the Middle to Northern 
Atlantic coast of the United States. This data was collected during 
a teacher-led classroom implementation of Geniventure where 
students played the game during class over the course of several 
days. During gameplay, students’ gameplay trajectory and their 
detailed in-game actions were recorded as trace data logs. Before 
playing the game, students took a pre-test consisting of 28 questions 
related to the genetic concepts covered in the game. Once gameplay 
concluded, students took a post-test which was identical to the pre-
test (Figure 2). This assessment was aligned to the ECD 
competency model of the game and previously validated through 
two rounds of expert review and cognitive interviews with students. 
In administration, it demonstrated an internal consistency reliability 
of alpha = 0.873. Both the pre-test and post-test were online surveys 
accessible through the same online portal as the game. 38 students 

were removed due to the partial or missing pre/post test data. 108 
students were removed due to missing trace data, resulting in a 
dataset containing trace data from 316 students. Results from a 
paired t-test on students’ knowledge pre-test (M = 14.41, SD = 
5.826) and post-test (M = 19.33, SD = 6.131) revealed a significant 
improvement from pre-test to post-test (t(315) = 14.663, p < 0.01, 
Cohen’s d = 0.823). A majority of the students attempted between 
50 and 150 challenges. The fewest number of challenges attempted 
by a student was 5, which serves as the basis for the sequence length 
of the subsampling window used to generate the sequential data for 
the competency models. The most challenges attempted by a 
student during the duration of the study is 248. To further illustrate 
the distribution of the number of challenges attempted per student, 
a histogram of the students’ gameplay trajectories is shown in 
Figure 3.  

4. ECD FOR STEALTH ASSESSMENT 
Evidence-centered design (ECD) is a systematic approach for 
designing and developing reliable knowledge assessments in terms 
of evidentiary arguments [24]. When utilized to identify and 
analyze user behavior in online learning environments, it serves as 
the basis of stealth assessment in game-based learning 
environments [34]. While historically ECD has been utilized in the 
development of summative assessments, recent years have seen its 
application in the design of formative stealth assessment models for 
game-based learning environments [20, 34]. Assessment results 
inferred by stealth assessment models can be utilized to support 
student learning through adaptive scaffolding within the learning 
environment and also inform teachers about student learning 
trajectories through a teacher dashboard. As noted above, stealth 
assessment is grounded in three core ECD models. These three 
models were applied to the current study using Geniventure as 
follows:  

• Task Model: This model defines the activities, or tasks, that 
students undertake as part of their learning. In the Geniventure 
learning environment, the task model consisted of 60 
challenges across six game levels that students undertake. 
These tasks focus on genetics concepts such as heredity, 
dominance/recessive, and the protein-to-trait relationship. 
 

Level 1 Level 2 Level 3 

Level 4 Level 5 Level 6 
Figure 1. Example challenges in Geniventure for the six gameplay levels. 



• Evidence Model: The evidence model takes as input low-level 
action sequences students produce while interacting with the 
game-based learning environment. Game-based learner 
behaviors are linked to targeted concepts to generate machine-
interpretable evidence that can be directly utilized with the 
modeling techniques presented here. That is, a probabilistic 
model is constructed from analysis of a series of actions 
related to mastery (or not) of a particular concept. The 
evidence model informs the competency model in order to 
update its belief of students’ competencies as they interact 
with the tasks. 

• Competency Model: Mastery of 16 concepts (Table 1) are 
dynamically estimated by the competency model with respect 
to students’ genetics knowledge. The concepts were derived 
from expert review of classroom learning goals and state 
science standards. The ground truth for their summative 
competencies are acquired from students’ post-test scores on 
an explicit content knowledge assessment. The competency 
model is aligned to the summative post-test through the same 
set of ECD-derived concepts in Table 1.  

In training the stealth assessment models, we extract competency 
scores based on correctness of students’ individual responses to 
items on a post-test knowledge assessment (Figure 2). 
Competencies for a single concept in our competency model can be 

evaluated in as few as one or as many as six items on the post-test 
survey since an assessment item can map to either one or two 

concepts. Item 28 is an open-ended question that can be answered 
in many unique ways, so we omit it from our competency score 
calculations. The mappings from each concept to individual survey 
questions can be found in Table 1.  

Each of the test items is recorded in a binary format, with 1 if the 
student answered the item correctly and 0 if the item is answered 
incorrectly. To calculate the competency score for each concept, 
the total number of correctly answered items was divided by the 
total number of items for that concept, resulting in a score between 
0 and 1. These scores serve as the target labels for our regression 
models.  

5. METHODOLOGY 
We evaluate two different approaches to the student competence 
modeling: single-task and multi-task. The single-task approach 
involves training an individual model for every concept, with each 
model only predicting a single competency score. This architecture 
allows for the model to focus exclusively on modeling trends and 
correlations between the students’ gameplay features and a single 
competency and does not take into account any interrelationships 
between the gameplay and multiple concepts. The multi-task 
approach requires a single model trained to approximate all 
competency scores using a single 16-unit vector. This approach is 
advantageous as it is capable of modeling complex, non-linear 
relationships between the various concept-level competencies that 
exist within the gameplay data. Multi-task modeling has seen an 
increase in usage due to its reduced number of parameters to be 
estimated, as well as the computational time required to train a 
model for each dependent variable, compared to the single-task 
modeling technique. Multi-task models’ capability to robustly 
model inherent relationships between multiple dependent variables 
using a shared input vector space makes this modeling technique 
ideal for stealth assessment frameworks, as well as circumstances 
where a large amount of training data may not be readily available 
[9].  
We evaluate these two approaches using two different feature 
representations of the students’ gameplay data: static and sequential 
representations. The static representation of the data involves 
producing a single feature vector representative of each student’s 
overall interaction with the Geniventure learning environment, 
resulting in a single dataset of 316 total data samples. The 
sequential representation is used to model subsequences extracted 
from individual challenge-level interactions across each student’s 
gameplay trajectory, retaining temporal information based on the 
order the challenges were completed. This sequence sub-sampling 
approach results in a single dataset of 29,977 total data samples. 

 Interaction Data 
Gameplay interactions with the Geniventure game environment 
were recorded in a timestamped log file for each student. The trace 
data log is a raw event stream in JSON format which records fine-
grained information about students’ actions in the game, such as a 
navigated challenge, changed allele, submitted answer, and 
received hints from the system. The types of actions vary among 
challenges because of the differences in the challenge settings. To 
eliminate the influence of the differences in challenges, we defined 
10 generic measurements across different challenges that describe 
contextual information about the challenge itself. The remaining 
features summarize students’ performance and actions within an 
individual challenge. For each student, we generated his/her 
gameplay trajectory across each individual challenge attempted. 
The length of the challenge level trajectories varied from 5 to 248 

Figure 2. Example post-test question. 

Figure 3. Histogram of students’ gameplay trajectories.  



(M = 95.86, SD = 33.63). Each of the features forms the basis for 
the static and sequential data.  

Table 1. Competency model concepts 

Concept 
Number 

Concept 
Description 

Number 
of 

Questions 

C1 Only one dominant allele is needed 
to produce the dominant trait. 3 

C2 Two recessive alleles are needed to 
produce a recessive trait. 2 

C3 
Create or select parental gametes to 
create an individual offspring with 
a specific phenotype.  

4 

C4 Set parental genotypes to produce a 
specific pattern of offspring. 6 

C5 
Use patterns in the phenotypes of a 
group of offspring to predict the 
genotype of the parents. 

5 

C6 
For some traits primarily 
influenced by a single gene, both 
alleles will have some effect, with 
neither being completely dominant. 

2 

C7 
Breed with a recessive animal to 
determine an unknown genotype 
(testcross). 

2 

C8 
Different versions of a gene 
correspond to (lead to the 
construction of) different versions 
of a specific protein. 

2 

C9 Proteins do work or have jobs to do 
in cells. 1 

C10 Proteins are nanomachines; 
different proteins do different jobs. 1 

C11 The function of a protein is 
determined by its shape. 1 

C12 
Different versions of a specific 
protein have different structures 
and may also have different 
functions. 

1 

C13 
Some traits have multiple alleles, 
which can form a ranked series in 
terms of dominance. 

2 

C14 

Genes on the X chromosome are 
referred to as X-linked. Males 
receive only one copy of the X 
chromosome and pass on their X 
only to their daughters. 

1 

C15 
Working from the phenotype, 
determine possible genotypes for 
an organism. 

2 

C16 Use a genotype to predict the 
phenotype for an organism. 2 

The features representing each challenge undertaken by a student 
are: (1) Pre-test score, (2) level of challenge, (3) mission number of 
challenge, (4) challenge number, (5) total time spent on challenge, 
(6) number of movements made during challenge, (7) number of 
hints encountered during challenge, (8) number of correct 

movements made during challenge, (9) number of wrong 
movements made during challenge, and (10) student’s completion 
status of challenge (0: incomplete, 1: complete with wrong answer, 
2: complete with correct answer).  

 Static Competency Models 
We evaluate five different regression models to determine their 
capabilities to predict students’ competency levels for each 
concept. The features selected for the static competency models 
summarize the whole gameplay of each student across all 
challenges and levels. Using the challenge-level features noted 
above, the summative student-level features generated for the static 
models are (1) average time spent per challenge, (2) total time spent 
playing challenges, (3) fraction of challenges failed, (4) fraction of 
challenges succeeded, (5) fraction of challenges abandoned, (6) 
fraction of incorrect movements, (7) fraction of correct movements, 
(8) total hints received, (9) number of hints per level, (10) hint count 
per challenge, and (11) number of levels played. 
We evaluate two variations of static modeling techniques: single-
task and multi-task. Single-task models predict each target concept 
score as an independent regression problem. The data set and 
features used in each model are identical, but the target variable is 
a single competency score for each model. Multi-task models 
approximate all target variables in a single model. However, not all 
of the static, single-task models can effectively translate to a multi-
task learning environment. Using single-task learning, we aim to 
discover the best model for each target variable independently 
while multi-task models perform better when there are underlying 
dependencies between the various competencies and a student’s 
gameplay features.  

5.2.1 Single-Task Models 
We evaluate three single-task models. Elastic Net is a linear 
regression model that utilizes both L1 and L2 regularizations. The 
hyperparameter tuning of Elastic-Net was performed on the L1 and 
L2 regularization coefficients (alpha, L1 ratio). Gradient-Boosted 
Regression (GBR) is a decision tree-based modeling approach that 
builds an ensemble of weak predictors to approximate the target 
variable. The model is built in an iterative fashion where each 
subsequent stage improves on the model created in the previous 
stage. The hyperparameter tuning for the GBR model was based on 
fine-tuning the maximum depth of each tree in the model and the 
total number of estimators added to the model. We also evaluate a 
Random Forest regressor, another type of ensemble learning 
method using a ‘forest’ of decision trees. Each tree is randomly 
assigned insensitivity to different features in the training data (i.e., 
feature bagging). This approach allows for larger model ensembles 
while avoiding overfitting. The hyperparameter tuning for Random 
Forest was performed on the maximum depth of each tree and the 
total number of trees in the forest. While both Random Forest and 
Gradient Boosted Trees are decision tree-based ensemble learners, 
a notable difference between these two models is how the trees are 
added to the ensemble. Within Random Forest models, trees are 
added independently while in GBR models, trees are added 
incrementally to compensate for the shortcomings of the previous 
iteration of models. For the single-task approach, we use a single 
model for each competency score. We keep the regression model 
type consistent across all competencies and the hyperparameter 
values consistent across models. 



5.2.2 Multi-Task Models 
Due to constraints in models, only certain types of algorithms 
support multi-task modeling. In this work, two types of multi-task 
regression models are tested: the multi-task version of Elastic Net 
and the multi-task version of Random Forest. The multi-task 
version of Elastic Net adds the constraint that the selected features 
in the model are the same for all the tasks. The Random Forest 
regressor is one of the few models that does not require any special 
modification to support multi-task learning due to the trees in the 
regressor being built on different subsamples of the dataset.   
Each of the static models was implemented using the scikit-learn 
library in Python. The data set (316 samples) is divided randomly 
into an 80/20 split with 20% serving as a held-out test set to 
evaluate the models. The 80% split is used for training the models, 
with five-fold cross-validation being applied to determine the best 
model. The training and test splits remain consistent across all 
investigated models and configurations (e.g., static vs. sequential, 
single-task vs. multi-task) to ensure a fair comparison between 
models, as well as the five-fold cross-validation splits. The final 
hyperparameter values as a result of the cross-validation on the 
training data are shown in Table 2.  

Table 2. Static model hyperparameters 
Regression Model Task Type Hyperparameters 

Elastic Net  Single-Task alpha = 0.05 
L1 Ratio = 0.9 

Gradient Boosted 
Regression Single-Task Max Tree Depth = 2 

Number of Trees = 20 

Random Forest  Single-Task Max Tree Depth = 3 
Number of Trees = 250 

Elastic Net Multi-Task alpha = 0.2 
L1 Ratio = 0.9 

Random Forest 
Regression Multi-Task Max Tree Depth = 2, 

Number of Trees = 200 

 Sequential Competency Models 
We explore four different types of deep learning-based models to 
model sequential representations of each student’s gameplay 
information across attempted challenges. Here, the motivation is to 
determine whether providing sequential context for each of the 
student’s problem-solving behaviors induces higher performance 
when modeling the competencies. To provide further sequential 
information to each of the models, we generate additional temporal 
features averaged across all challenges completed up to the current 
challenge attempted by the user: (1) average time per challenge, (2) 
average movements per challenge, (3) average correct movements 
per challenge, (4) average incorrect movements per challenge, (5) 
average hint count per challenge, (6) average unsubmitted 
challenges, (7) average failed challenges, and (8) average 
successful challenges. 
We use these features in addition to the 10 static challenge-level 
features described in Section 5.1 to provide a total of 18 features to 
each of the sequential models. The models used for both the single-
task and multi-task sequential models are variants of recurrent 
neural networks including Long Short-Term Memory recurrent 
neural networks (LSTMs) [11] and Gated Recurrent Units (GRUs) 
[6], due to their capability to model both single-task and multi-task 
data. LSTMs utilize a sequence of memory blocks that each contain 

an input gate, forget gate, and an output gate. The forget gate 
determines whether the previous memory block’s gradient is 
retained or discarded, thus allowing the LSTM to model long-term 
dependencies across temporal sequences, while the input and 
output gates modulate the input and output vectors, respectively. 
GRUs are mechanisms that provide the same “forgetting” 
functionality as LSTMs but contain fewer hyperparameters, 
utilizing an update gate and a reset gate. This allows GRUs to be 
more computationally efficient and sometimes more effective on 
less training data than LSTMs.  
In addition to standard LSTMs, we evaluate bidirectional LSTMs 
(Bi-LSTMs) [32] as well as LSTMs implementing a self-attention 
mechanism (SA-LSTMs) [41]. Bidirectional LSTMs are a variation 
of LSTMs that contain two input layers on opposing sides of the 
hidden layer, allowing the model to retain temporal information 
based on the past and the future of the input sequence, as opposed 
to only the past. A self-attention LSTM provides additional 
temporal context beyond contiguous feature vectors by utilizing a 
weighted sum of hidden representations of the entire sequence.  
Adopting the same manner used in training the static competency 
models, each model is optimized using 5-fold cross validation, 
where the data splits are consistent across both static and sequential 
models to ensure a fair comparison, and then evaluated with the 
held-out test set. The hyperparameters are tuned using an iterative 
grid search, and each model was trained for 200 epochs. The 
subsequences used to train each sequential model were sampled 
across the challenges completed by each student using a sequence 
length of 10, and a sampling stride of 1. We use front padding in 
each sequence during the subsampling process to allow the models 
to fit during the beginning of each sequence. The concept-level 
prediction made for each student was calculated by taking the 
average competency prediction value across an entire sequence. 
The sequential data modeling pipeline was implemented using 
Python, and the deep learning models were implemented using the 
Keras library with the TensorFlow backend. The hyperparameter 
tuning was performed across the number of hidden units in each 
model’s hidden layer, as well as the dropout rate in the hidden layer 
[9]. The final hyperparameter values as a result of the cross-
validation on the training data are shown in Table 3. 

5.3.1 Single-Task Models 
To evaluate the single-task sequential modeling approach, we train 
16 different independent models, with each model approximating a 
single competency score based on the gameplay features described 
in Sections 5.1 and 5.3. Using the cross-validation performance on 
the training data, we selected the optimal configuration for each 
model type based on the highest performance in terms of the 
average R2 value across all competency scores.  

5.3.2 Multi-Task Models 
Because of the architecture of the sequential deep learning models, 
each single-task model type is also able to perform as a multi-task 
model, with the only change occurring within the output layer, as 
the number of output units is expanded to contain an individual 
output node for each concept, instead of a single concept. This 
allows a single model to simultaneously infer student competencies 
across all concepts. Similar to the single-task models, the optimal 
model configurations were selected based on the average R2 score 
across all concepts.  



We hypothesize that the optimal modeling techniques will vary due 
to the different complex characteristics that underlie each concept 
and the varying fitness of ECD models to these characteristics. 
Therefore, we propose the use of a hybrid framework that contains 
a combination of the various single-task and multi-task models that 
are both static and sequential. A visualization of the proposed 
hybrid stealth assessment framework comprised of the optimal 
models (highlighted in green text) is shown in Figure 4 above. 

The rationale behind the use of a hybrid stealth assessment 
framework is that student competencies can vary widely with 
regards to each concept’s correlation to specific questions in post-
test scoring methods, as well as each concept’s correlation to 
specific gameplay features or levels. By implementing both static 
and sequential variations of single-task and multi-task models, the 
long-term and short-term tendencies within each student’s 
gameplay is explored on a challenge and a student level. 
Additionally, the relationships between the individual 
competencies are modeled independently in the single-task 
approach, indicating whether certain concepts have no 
interweaving tendencies with other concepts within the gameplay. 
By utilizing a mixture of both single-task and multi-task models in 
this framework, multi-task models are only fit where underlying 
relationships exist between concepts, and concepts that have no 
underlying relationships with other concepts are optimally modeled 
by the single-task approach. The same concept applies to the 
sequential and static modeling: only concepts that have informative 
temporal trends across a student’s challenge-level gameplay data 

are modeled by the sequential models. All other concepts are 
modeled by the static models utilizing only student-level data. 

Table 3. Sequential model hyperparameters 
Regression Model Task Type Hyperparameters 

LSTM Single-Task Hidden units = 80 
Dropout rate = 0.33 

Bi-directional LSTM Single-Task Hidden units = 20 
Dropout rate = 0.33 

GRU Single-Task Hidden units = 80 
Dropout rate = 0.5 

Self-attention LSTM Single-Task Hidden units = 60 
Dropout rate = 0.33 

LSTM Multi-Task Hidden units = 100 
Dropout rate = 0.5 

Bi-directional LSTM Multi-Task Hidden units = 60 
Dropout rate = 0.33 

GRU Multi-Task Hidden units = 40 
Dropout rate = 0.33 

Self-attention LSTM Multi-Task Hidden units = 80 
Dropout rate = 0.5 

Figure 4. Hybrid, static, and sequential stealth assessment models. 
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Table 4. R2 value of single-task models based on held-out test set 
 Concept  
Model C1 C2 C3 C4 C5 C6 C7 C8 C9 C11 C12 C13 C14 C15 C16 Mean 
Elastic Net 0.210 0.169 0.176 0.300 0.348 0.232 0.145 0.185 0.073 0.138 0.048 0.098 0.052 0.163 0.094 0.162 
GBR 0.214 0.301 0.156 0.363 0.365 0.119 0.107 0.190 0.045 0.111 0.034 0.110 0.081 0.263 0.100 0.171 
RF 0.269 0.297 0.165 0.434 0.404 0.109 0.165 0.241 0.096 0.225 0.029 0.086 0.100 0.318 0.148 0.206 
LSTM 0.314 0.383 0.149 0.398 0.346 0.155 0.141 0.157 0.054 0.091 0.034 0.013 0.028 0.302 0.185 0.183 
Bi-LSTM 0.363 0.328 0.164 0.376 0.368 0.153 0.072 0.104 -0.029 0.075 0.009 -0.020 -0.094 0.273 0.262 0.160 
SA-LSTM 0.315 0.351 0.135 0.356 0.314 0.148 0.107 0.123 0.009 0.070 0.050 0.038 -0.030 0.306 0.218 0.167 
GRU 0.109 0.088 0.062 0.156 0.189 0.090 0.092 0.029 -0.158 0.017 0.022 0.004 -0.319 0.089 0.031 0.033 
 

Table 5. R2 value of multi-task models based on held-out test set 
 Concept  
Model C1 C2 C3 C4 C5 C6 C7 C8 C9 C11 C12 C13 C14 C15 C16 Mean 
RF 0.279 0.298 0.131 0.336 0.337 0.154 0.152 0.170 0.063 0.129 0.051 0.114 0.051 0.295 0.193 0.184 
Elastic Net 0.211 0.171 0.182 0.307 0.350 0.239 0.159 0.181 0.077 0.136 0.057 0.099 0.049 0.172 0.080 0.165 
LSTM 0.291 0.270 0.144 0.362 0.346 0.147 0.179 0.174 0.075 0.131 0.058 0.024 0.029 0.259 0.130 0.175 
Bi-LSTM 0.313 0.273 0.157 0.371 0.356 0.142 0.176 0.166 0.066 0.123 0.058 0.021 0.014 0.260 0.144 0.176 
SA-LSTM 0.320 0.302 0.176 0.361 0.352 0.173 0.201 0.133 0.023 0.110 0.017 0.034 -0.055 0.313 0.255 0.181 
GRU 0.309 0.241 0.152 0.352 0.350 0.156 0.199 0.169 0.061 0.127 0.050 0.048 0.036 0.275 0.040 0.171 
 

Table 6. Highest R2 values of optimal hybrid competency models 
 Concept  

Model C1 C2 C3 C4 C5 C6 C7 C8 C9 C11 C12 C13 C14 C15 C16 Mean 
Hybrid    0.363 0.383 0.182 0.434 0.404 0.239 0.201 0.241 0.096 0.225 0.058 0.114 0.100 0.318 0.262 0.241 

 

6. RESULTS AND DISCUSSION 
We report the results of the single-task models (Table 4) and the 
multi-task models (Table 5) for each concept in terms of R2. The 
highest R2 value produced for each individual concept is presented 
in Table 6, as this represents the performance of our proposed 
hybrid framework across all concepts. Figure 5 shows the 
performance of single-task and multi-task models compared to the 
performance of the optimal hybrid model (Left: comparison to 
single-task models, Right: comparison to multi-task models). The 
results are obtained based on each model’s performance on the 
held-out test set after being trained on the entirety of the training 
set. As noted above, the cross-validation splits applied to the 
training set were performed on a student level to prevent data 

leakage and were consistently applied to the set of machine learning 
techniques for a fair comparison across different models. For this 
work, Concept 10 was omitted because every student that took the 
post-test survey answered the question correctly, resulting in a 
dependent variable with zero variance, thus having no impact on 
the evaluation of our respective models.  
The best performing model in terms of average R2 value across all 
concepts was the single-task Random Forest; however, it was only 
the optimal model for 7 out of the 15 total concepts. The single-task 
bidirectional long short-term memory network performed the 
highest for two concepts, as well as the multi-task Elastic Net. The 
single-task LSTM and the multi-task Random Forest (RF), Bi-
LSTM, and self-attention LSTM were optimal models for one 
concept each. The Gradient Boosted Regression (GBR), single-task 

Figure 5. Performance of single-task and multi-task models compared to hybrid model performance. 



Gated Recurrent Unit, and single-task SA-LSTM performed 
relatively poorly and were not the highest performing competency 
models for any of the concepts. The multi-task models were the 
most effective approach for five of the 15 concepts, while single-
task models were most effective for the other 10 concepts. 
Across both single-task and multi-task models, the GRU was the 
lowest-performing model, achieving an average R2 value of 0.102 
across all concepts. The results that variants of LSTMs (e.g., 
standard LSTMs, SA-LSTMs, Bi-LSTMs) achieved the highest R2 
score in predicting student competencies on at least one concept 
demonstrate that there exist complex, sequential patterns within the 
students’ gameplay data, which were effectively modeled by the 
LSTMs’ three gating units, but not by the two gating units enabled 
in GRUs. The SA-LSTMs, Bi-LSTMs, and standard LSTM models 
all returned relatively equal performances across the single-task 
and multi-task data, with average R2 values of 0.174, 0.168, and 
0.179, respectively. It appears that although the Bi-LSTM and SA-
LSTM capture various extra temporal contextual patterns not 
inherently captured by the standard LSTM, this information is not 
globally beneficial to all the competency models, explaining why 
neither model outperforms the standard LSTM on average. 
However, this result might also be attributed to the fact that the 
sequential data was only generated from 316 students, which may 
not be enough information for any of the more complex, sequential 
models utilizing a higher number of trainable parameters, to truly 
detect informative underlying temporal patterns.  
Selecting the single-task RF as the model for all concepts based on 
its average performance across all the concepts results in a mean R2 

value of 0.206. However, as illustrated in Table 6, by using our 
proposed hybrid system approach and selecting the optimal model 
for each individual concept, we can obtain a performance of 0.241, 
which is a 17.0% improvement compared to a homogenous 
framework typically used within stealth assessment. Our 
observation that the use of multiple models in the hybrid stealth 
assessment framework would induce higher performance than 
using a single model can be explained by the fact that static, 
sequential, single-task, and multi-task models were all selected as 
an optimal model at least once. 
Additionally, it should be noted that when considering only the 
concepts that mapped to multiple questions (i.e. 1-8, 13, 15-16), the 
deep-learning based sequential models produced a higher and more 
consistent performance (0.224 for single-task, 0.222 for multi-task) 
than the static models (0.214 for single-task, 0.210 for multi-task) 
on average. The multi-task SA-LSTM and the single-task RF both 
achieved the optimal performance across the multi-question 
concepts, with an average R2 value of 0.239. Random Forest may 
also perform relatively well as a competence model because it uses 
an ensemble approach, making it more robust against overfitting. 
One correlation that was noted is that the single-task models were 
the best technique for 75% (3 out of 4) of the concepts that had only 
one corresponding question in the post-test. This can potentially be 
attributed to the fact that each of the single-task models only models 
a single concept, without taking into account any of the linear and 
non-linear relationships that might exist between the gameplay 
features and the different competencies for a single student. 
Concepts that correspond to only a single question possibly contain 
a less complex relationship between the competency scores and the 
gameplay features, meaning that a single-task model is sufficient 
for that modeling task without simultaneously modeling any 
context related to competencies for other concepts, which can have 
a detrimental impact to the predictive tasks. In addition, each of the 
three optimal models for the single-question concepts were trained 

using static feature representations, suggesting that the student-
level features were the most informative to our model, and the 
temporal information did not yield greater predictive performance 
for the student competency models. 
However, we also observe that the single-task models were also 
frequently the highest-performing models for the multi-question 
concepts. Seven out of the 11 concepts that were represented by 
multiple post-test questions were optimally modeled using a single-
task model, either using static or sequential representations. Out of 
these 7 highest-performing models, 4 of them used static input 
representations. In a similar manner to the single-task models 
mentioned previously, this implies that student-level features were 
informative for a subset of the multi-question concepts, while the 
temporal context provided within the sequence modeling tasks was 
still beneficial to predicting students’ individual competencies for 
the three other concepts.  
Overall, the majority of optimal classifiers across the single-
question and multi-question concepts were single-task, static 
representations, as these account for 7 out of the 15 total concepts 
we evaluated. We then analyze the remaining models to investigate 
if there are any correlations between the concepts and the optimal 
models. The competency models for Concepts 1 and 2 were both 
modeled using sequential single-task models, two concepts that 
correspond to five combined post-test questions. Concept 1 deals 
with generating dominant traits using alleles, while Concept 2 deals 
with a similar task generating recessive traits using alleles. The 
similarity in these two concepts may be a possible reason that the 
highest predictive performance was achieved by the same modeling 
approach. The highest R2 values (0.434 and 0.404) occurred in 
Concepts 4 and 5, which are the two concepts that correspond to 6 
and 5 post-test questions, respectively. The correlation between the 
higher performance in these two RF-based competency models can 
be explained by the fact that ensemble models leveraging more 
single-task models contribute to improvement of the average 
predictive performance, which prevents a model that produces a 
less accurate prediction from heavily impacting the overall 
representative performance.  
The relative scores between concepts are highly correlated across 
modeling methods. In other words, the concepts that had a high R2 
score for one model also had a high R2 score for most of the other 
models. As shown in Figure 5, Concepts 4 and 5 have the highest 
R2 value irrespective of the modeling method, and Concept 14 is on 
the lower end of R2 values. This could be because of how well a 
gameplay feature predicts a concept is dependent on the type of 
concept. In other words, some concepts are harder to model 
irrespective of the modeling approach used for the model. 
Interestingly, concepts that contained only a single question (i.e. 9, 
11-12, 14) produced noticeably low R2 values. These single-
question concepts produced an average R2 value of 0.046 across all 
the models. Because there was only a single question associated 
with the concept, each competency score was entirely dependent on 
students’ single response to the question, which could result in a 
reliability issue in the competency scores due to students’ behaviors 
related to guess and slip as well as a higher variance in the scores, 
together possibly attributing to these low R2 scores.  
A chart of the average student score for each concept based on their 
post-test performance is shown in Figure 6 below, distinguishing 
between single-question and multi-question concepts. The average 
student performance on multi-question concepts was markedly 
higher than for single-question concepts, with students achieving 
scores of 0.672 and 0.507, respectively. It was noted that the 



average students’ scores on the questions mapped to a single 
concept was remarkably low compared to an overall student score 
of 0.661 across all questions. This factor may also have impacted 
the predictive performance of the competency models compared to 
competency models that encounter fairly consistent or accurate 
student answers to post-test questions, as the questions 
corresponding to lower student scores introduce higher variance 
into the resulting competency scores used to train the models.  
Finally, we investigate the impact that overlapping concepts may 
have on the performance of the classifiers. A concept is considered 
to be “overlapping” if it shares a correlated question with one or 
more different concepts. Out of the 16 concepts, 6 concepts were 
found to be “completely” overlapping; that is, every question 
associated with that concept was also associated with another 
concept. One concept was “partially” overlapping, indicating that 
only a portion of the associated questions were also mapped to 
another concept. The remaining concepts were the only ones that 
corresponded with their own associated question or group of 
questions. Student scores were significantly higher for overlapping 
concepts as opposed to non-overlapping questions, achieving 
average scores of 0.718 and 0.550, respectively. This trend is also 
present in our competency models, as the optimal models in our 
hybrid framework yield R2 values of 0.339 (overlapping) and 0.157 
(non-overlapping) on average. Surprisingly, the optimal models for 
the overlapping concepts were primarily single-task models, with 
the exception of one model. This indicates that multi-task modeling 
across all the concepts including both relevant and irrelevant 
concepts is actually detrimental in terms of achieving higher 
predictive performance. Thus, a promising future direction is to 
investigate multi-task learning performance by grouping relevant 
concepts and separately modeling related concepts only. 

In this particular application domain (genetics), concepts C1 and 
C2 are foundational to eight other concepts, as they describe a 
common pattern of gene variant behavior in inheritance of traits. 
Some concepts are related variously to other concepts, e.g., C5 
requires deductive reasoning based on C1, C2, and C15, while it 
also serves as a prerequisite for C7, which allows determining gene 
variants for ambiguous traits. Alternatively, concepts C9-C12 focus 
primarily on molecular genetic inheritance and are not as tightly 
related to other concepts. This example of varying connections 
within genetics-related concepts illustrates the broader application 
of our hybrid model and why it demonstrates promise for other 
domains.  

7. CONCLUSION 
Stealth assessment holds considerable potential for game-based 
learning. Recent work exploring stealth assessment has typically 

employed a single machine learning technique to devise 
competency and evidence models. This approach operates under 
the assumption that each student competency can be optimally 
modeled by the same learning algorithm that yields the highest 
predictive performance on average. However, this may not always 
be the case, as student competencies often have varying 
interleaving relationships with each other or even underlying 
complexities within itself. 
In this work, we demonstrate the effectiveness of a hybrid stealth 
assessment framework consisting of a combination of single-task 
and multi-task models, using static and sequential features to 
represent student gameplay data. We evaluate our stealth 
assessment framework using a game-based learning environment 
and predict student competencies as measured by a post-
test. Results indicate that a heterogeneous approach to stealth 
assessment modeling techniques induces higher results across all 
concepts when compared to the single-model baseline evaluations. 
Selecting a single competency model for all concepts based on its 
average performance across all the concepts is a common practice 
in stealth assessment frameworks. However, the proposed hybrid 
system using the optimal model for each individual concept returns 
a performance that is substantially higher than a homogeneous 
framework. In addition to static, single-task modeling, the 
sequential, multi-task modeling approach can adapt to multiple 
concepts by effectively capturing sequential context underlying 
individual students’ gameplay behaviors, as well as simultaneously 
modeling various competencies that were manifested throughout 
the gameplay sessions. The use of all of the aforementioned 
modeling techniques provides a multi-dimensional approach that 
has been demonstrated to be a step forward in improving stealth 
assessment techniques. 
There are a number of future directions that can be investigated to 
further improve the performance of the hybrid stealth assessment 
framework. Multi-task learning becomes increasingly difficult as 
the number of tasks increases and training deep sequential models 
for 16 tasks using only 316 data samples is likely a limiting factor 
in the multi-task models’ performances. To gain further insight into 
the use of multi-task learning as a competency modeling technique, 
the hybrid stealth assessment framework presented in this work 
should be evaluated on comparatively larger datasets. This also 
enables the evaluation of the hybrid framework’s ability to 
adequately translate to other student populations. Alternatively, 
different ways to reduce the number of tasks can be investigated. 
Due to the hierarchical, interweaving relationships within both 
individual concepts and between concepts and various questions, it 
will be worthwhile to investigate other sophisticated hierarchical 
modeling methods such as Bayesian hierarchical modeling or 
clustering methods, as well as refine the post-test questions and the 
mapping to the concepts to more reliably assess students’ 
competency for each concept. Additionally, the feature engineering 
process performed for both static and sequential models can evolve 
significantly, possibly inducing higher performance from the 
competency models. Finally, it will be instructive to investigate the 
generalizability of this framework across different learning 
environments, contexts, and student populations.  

8. ACKNOWLEDGEMENTS 
The authors would like to thank Robert Taylor for his assistance in 
facilitating this research. This research was supported by the 
National Science Foundation under Grant DRL-1503311. Any 
opinions, findings, and conclusions expressed in this material are 
those of the authors and do not necessarily reflect the views of the 
National Science Foundation. 

Figure 6. Student post-test performance on concepts 
associated with single and multiple questions. 



9. REFERENCES 
[1] Akram, B., Min, W., Wiebe, E., Mott, B., Boyer, K. E., and 

Lester, J. 2018. Improving stealth assessment in game-based 
learning with LSTM-based analytics. In Proceedings of the 
11th International Conference on Educational Data Mining. 
International Educational Data Mining Society, 208-218. 

[2] Asbell-Clarke, J., Rowe, E., Sylvan, E., and Baker, R. 2013. 
Working through impulse: assessment of emergent learning in 
a physics game. Games+ Learning+ Society. 9.   

[3] Bosch, N., Chen, H., D'Mello, S., Baker, R. and Shute, V. 
2015. Accuracy vs. availability heuristic in multimodal affect 
detection in the wild. In Proceedings of the 2015 International 
Conference on Multimodal Interaction. 267-274. 

[4] Buffum, P. S., Frankosky, M., Boyer, K. E., Wiebe, E. N., 
Mott, B. W., and Lester, J. C. 2016. Collaboration and gender 
equity in game-based learning for middle school computer 
science. Computing in Science and Engineering. 18, 2, 18-28. 

[5] Chaudhry, R., Singh, H., Dogga, P., and Saini, S. K. 2018. 
Modeling hint-taking behavior and knowledge state of 
students with multi-task learning. In Proceedings of the 
International Conference on Educational Data Mining. 
International Educational Data Mining Society. 

[6] Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., 
Bougares, F., Schwenk, H., and Bengio, Y. 2014. Learning 
phrase representations using RNN encoder-decoder for 
statistical machine translation. arXiv preprint 
arXiv:1406.1078. 

[7] Clark, D. B., Tanner-Smith, E. E., and Killingsworth, S. S. 
2016. Digital games, design, and learning: A systematic 
review and meta-analysis. Review of Educational Research. 
86, 1, 79-122. 

[8] Falakmasir, M.H., Gonzalez-Brenes, J.P., Gordon, G.J. and 
DiCerbo, K.E. 2016, April. A data-driven approach for 
inferring student proficiency from game activity logs. In 
Proceedings of the Third ACM Conference on Learning@ 
Scale. 341-349. 

[9] Geden, M., Emerson, A., Rowe, J., Azevedo, R., and Lester., 
J. 2020 (in press). Predictive student modeling in educational 
games with multi-task learning. In Proceedings of the Thirty-
Fourth AAAI Conference on Artificial Intelligence. 

[10] Hamari, J., Shernoff, D. J., Rowe, E., Coller, B., Asbell- 
Clarke, J., and Edwards, T. 2016. Challenging games help 
students learn: An empirical study on engagement, flow and 
immersion in game-based learning. Computers in Human 
Behavior. 54, 170-179. 

[11] Hochreiter, S., and Schmidhuber, J. 1997. Long short-term 
memory. Neural Computation. 9, 8, 1735-1780. 

[12] Karumbaiah, S., Baker, R. S., and Shute, V. 2018. Predicting 
quitting in students playing a learning game. In Proceedings 
of the 11th International Conference on Educational Data 
Mining. 167-176. 

[13] Kiili, K., Devlin, K., Perttula, T., Tuomi, P., and Lindstedt, A. 
2015. Using video games to combine learning and assessment 
in mathematics education. International Journal of Serious 
Games. 2, 4, 37-55. 

[14] Kim, Y.J., Almond, R.G. and Shute, V.J. 2016. Applying 
evidence-centered design for the development of game-based 

assessments in physics playground. International Journal of 
Testing. 16, 2, 142-163. 

[15] Lester, J.C., Ha, E.Y., Lee, S.Y., Mott, B.W., Rowe, J.P. and 
Sabourin, J.L. 2013. Serious games get smart: Intelligent 
game-based learning environments. AI Magazine. 34, 4, 31-
45. 

[16] Liu, Z., Zhi, R., Hicks, A., and Barnes, T. 2017. 
Understanding problem solving behavior of 6–8 graders in a 
debugging game. Computer Science Education. 27, 1, 1-29. 

[17] Ma, Y., Cui, C., Yu, J., Guo, J., Yang, G., and Yin, Y. 2019. 
Multi-task MIML learning for pre-course student performance 
prediction. Frontiers of Computer Science. 14, 5, 145313. 

[18] McElroy-Brown, K. and Reichsman, F. 2019. Genetics with 
dragons: Using an online learning environment to help 
students achieve a multilevel understanding of genetics. 
Retrieved from http://concord.org. 

[19] Mills, C., D’Mello, S., Lehman, B., Bosch, N., Strain, A., and 
Graesser, A. 2013. What makes learning fun? exploring the 
influence of choice and difficulty on mind wandering and 
engagement during learning. In Proceedings of the 
International Conference on Artificial Intelligence in 
Education. Springer, 71-80. 

[20] Min, W., Frankosky, M., Mott, B.W., Rowe, J., Smith, 
P.A.M., Wiebe, E., Boyer, K., and Lester, J. 2019. 
DeepStealth: game-based learning stealth assessment with 
deep neural networks. IEEE Transactions on Learning 
Technologies. 

[21] Min, W., Frankosky, M. H., Mott, B. W., Wiebe, E. N., Boyer, 
K. E., and Lester, J. C. 2017. Inducing stealth assessors from 
game interaction data. In Proceedings of the 9th International 
Conference on Artificial Intelligence in Education. Springer, 
212-223.  

[22] Min, W., Frankosky, M.H., Mott, B.W., Rowe, J.P., Wiebe, 
E., Boyer, K.E. and Lester, J.C. 2015. DeepStealth: leveraging 
deep learning models for stealth assessment in game-based 
learning environments. In Proceedings of the International 
Conference on Artificial Intelligence in Education. Springer, 
Cham, 277-286. 

[23] Min, W., Mott, B. W., Rowe, J. P., Liu, B., and Lester, J. C. 
2016. Player goal recognition in open-world digital games 
with long short-term memory networks. In Proceedings of the 
International Joint Conference on Artificial Intelligence. 
2590-2596. 

[24] Mislevy, R., Steinberg, L., and Almond R. 2003. Focus article: 
on the structure of educational assessments. Measurement: 
Interdisciplinary Research and Perspectives. 1, 1, 3–62. 

[25] Owen, V. E., Roy, M. H., Thai, K. P., Burnett, V., Jacobs, D., 
Keylor, E., and Baker, R. S. 2019. Detecting wheel-spinning 
and productive persistence in educational games. International 
Educational Data Mining Society. 

[26] Puntambekar, S. and Hubscher, R. 2005. Tools for scaffolding 
students in a complex learning environment: What have we 
gained and what have we missed?. Educational Psychologist. 
40, 1, 1-12. 

[27] Qu, S., Li, K., Wu, B., Zhang, X., and Zhu, K. 2019. Predicting 
student performance and deficiency in mastering knowledge 
points in MOOCs using multi-task learning. Entropy. 21, 12, 
1216. 



[28] Roschelle, J., Dimitriadis, Y. and Hoppe, U. 2013. Classroom 
orchestration: synthesis. Computers & Education. 69, 523-
526. 

[29] Rosenheck, L., Lin, C., Klopfer, E., and Cheng., M. 2017. 
Analyzing gameplay data to inform feedback loops in the 
radix endeavor. Computers & Education. 111, 60–73. 

[30] Rowe, J. P., Shores, L. R., Mott, B. W., and Lester, J. C. 2011. 
Integrating learning, problem solving, and engagement in 
narrative-centered learning environments. International 
Journal of Artificial Intelligence in Education. 21, 1-2, 115-
133.   

[31] Sawyer, R., Smith, A., Rowe, J., Azevedo, R. and Lester, J. 
2017. Enhancing student models in game-based learning with 
facial expression recognition. In Proceedings of the 25th 
Conference on User Modeling, Adaptation and 
Personalization. 192-201. 

[32] Schuster, M. and Paliwal, K. 1997. Bidirectional recurrent 
neural networks. IEEE Transactions on Signal Processing. 45, 
2673 - 2681. 

[33] Shute, V. J. and Ke, F. 2012. Games, learning, and assessment. 
Assessment in Game-Based Learning. Springer, 43-58. 

[34] Shute, V. J. 2011. Stealth assessment in computer-based 
games to support learning. Computer Games and Instruction. 
55, 2, 503-524. 

[35] Shute, V., Ventura, M., Zapata-Rivera, D., and Bauer, M. 
2009. Melding the power of serious games and embedded 
assessment to monitor and foster learning flow and grow. 
Serious Games: Mechanisms and Effects. 2, 295–321. 

[36] Shute, V. and Ventura, M. 2013. Measuring and Supporting 
Learning in Games: Stealth Assessment. The MIT Press, 
Cambridge, MA. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[37] Shute, V.J. and Moore, G.R. 2017. Consistency and validity in 
game-based stealth assessment. Technology enhanced 
innovative assessment: Development, Modeling, and Scoring 
from an Interdisciplinary Perspective. 296. 

[38] States, N. L. 2013. Next Generation Science Standards. 
Washington. 

[39] Tabak, I. 2004. Synergy: A complement to emerging patterns 
of distributed scaffolding. The Journal of the Learning 
Sciences. 13, 3, 305-335. 

[40] Tokac, U., Novak, E., and Thompson, C. G. 2019. Effects of 
game‐based learning on students' mathematics achievement: 
A meta‐analysis. Journal of Computer Assisted Learning. 35, 
3, 407-420. 

[41] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., 
Gomez, A.N., Kaiser, L. and Polosukhin, I. 2017. Attention is 
all you need. In Advances in Neural Information Processing 
Systems. 5998-6008. 

[42] Wang, P., Rowe, J.P., Min, W., Mott, B.W. and Lester, J.C. 
2017. Interactive narrative personalization with deep 
reinforcement learning. In Proceedings of the International 
Joint Conference on Artificial Intelligence. 3852-3858. 

[43] Wouters, P., Van Nimwegen, C., Van Oostendorp, H., and 
Van Der Spek, E. D. 1993. A meta-analysis of the cognitive 
and motivational effects of serious games. Journal of 
Educational Psychology. 105, 2, 249-267. 

[44] Wouters, P. and Van Oostendorp, H. 2013. A meta-analytic 
review of the role of instructional support in game-based 
learning. Computers & Education. 60, 1, 412-425. 

 

 


