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Abstract— Utilizing sensors for affect detection in adaptive 

learning technologies has been the subject of growing interest in 

recent years. This extends to the collection of multiple 

concurrent sensor-based input channels to enable multimodal 

affective modeling. However, sensors pose significant challenges 

to affect detection, including sensor connectivity issues, 

background noise, inconsistent data logging, and loss of data due 

to hardware failure. In this paper, we introduce a framework 

for multimodal data imputation to improve automated detection 

of student affect in adaptive learning technologies. Through the 

use of an autoencoder neural network trained on Microsoft 

Kinect-based posture data and electrodermal activity data with 

synthetic noise injection, we approximate missing values within 

the original dataset while still preserving the inter-related 

context between features when reconstructing the dataset. The 

reconstructed dataset can be used in conjunction with 

multimodal data fusion techniques to further boost affect 

detector accuracy. Results indicate that this framework 

improves the effectiveness of multimodal affect detectors when 

compared to unimodal baseline models, as well as models using 

baseline data imputation techniques such as mean imputation. 

Further, it maintains cross-modality information that influences 

the multimodal affect detectors’ performance, as the approach 

also outperforms previous work using the latent representation 

of the imputed dataset as training data instead of a complete 

reconstruction of the original dataset’s dimensionality. 

Keywords—data imputation, deep learning, affect detection, 

multimodal analytics, data fusion 

I. INTRODUCTION  

     Affect plays a pivotal role in learning [1]. Affective states 

such as boredom have been associated with poorer learning 

outcomes [2], while states such as confusion and engagement 

have  been associated with positive learning outcomes [3]. 

Other affective states, such as frustration, have a complex 

relationship with learning, as they have been shown to have a 

correlation with both negative and positive learning outcomes 

in different contexts [3], [4]. Affective models are critical to 

adaptive learning technologies [5] due to their role in 

detecting and intervening in student emotional states to 

enhance learning and engagement [6], [7].  

Recent years have seen increased interest in multimodal 

affect detection within adaptive learning technologies. The 

inclusion of multiple independent data streams has been 

shown to provide a significant boost in affect detector 

performance [8], as well as additional insight into a student’s 

tendencies and behavior when engaged with a learning 

environment [9]. Multimodal machine learning models are of 

particular interest because of their ability to emulate human 

perception of emotion based on multiple concurrent 

modalities (e.g., visual, auditory, tactile) [10]. As a result of 

increased interest in multimodal affect detection, multimodal 

machine learning techniques have been applied to a wide 

range of tasks including detection of stress [11], anger [12], 

engagement [13], and biometric features [14]. 

Multimodal affect detection frequently involves the 

deployment of multiple physical hardware sensors, each 

designed to capture a distinct modality. For example, recent 

work on multimodal sensor-based affect detection has 

captured modalities such as facial expression, eye tracking, 

posture, gesture, speech, electrodermal activity (EDA), 

and electroencephalography (EEG) [7], [13], [15]. Sensor-

based methods have shown significant promise for affect 

detection in adaptive learning technologies because of their 

potential for generalizability across domains and learning 

environments and because they need not rely upon domain-

specific feature representations. Additionally, sensors can 

provide a relatively inexpensive alternative to more costly 

input sources because many sensors do not require 

specialized hardware support, as they use built-in webcams, 

eye trackers, microphones, and motion-tracking cameras. 

However, there are inherent challenges with sensor-based 

systems [7]. Sensors can frequently experience issues such as 

poor calibration, mistracking, background noise, inconsistent 

behavior, and loss of data due to storage or transfer 

constraints. These problems are exacerbated when the 

number of concurrent sensors is increased, since the 

proportion of incomplete data samples increases with 

intermittent sensor failures [16]. Often, a sensor can 

malfunction for an extended period of time, producing large 

volumes of data that contain significant noise or that are 

missing altogether. 

To address these challenges, we propose a novel 

framework for handling missing data in multimodal affect 

detection. We investigate this framework in the context of 

student affect detection in a game-based learning 

environment for emergency medical training, TC3Sim. We 

investigate multimodal affect detection using posture-

tracking data and EDA data, where the EDA data is missing 

from approximately half of the raw dataset. We train an 



autoencoder neural network with the subset of data containing 

all modalities. The autoencoder is trained to reconstruct the 

original dataset using artificial noise injection, thus 

simulating the missing modalities, and then it is used to 

impute the missing EDA values. We also investigate the use 

of the encoder portion of the autoencoder as an alternative to 

dimensionality reduction during feature extraction. 

Afterward, we identify the highest-performing classifier for 

each of five affective states, comparing several classifiers 

trained on the reconstructed multimodal dataset using 

alternate data fusion techniques. Results indicate that 

autoencoder-based data reconstruction outperforms other 

data imputation methods based on classifier performance, and 

multimodal affect detection yields improved classifier 

performance compared to unimodal affect detection. 

II. RELATED WORK 

     Factors such as the decreasing cost of sensors, hardware 

flexibility, and support for multimodal systems have led to 

increased interest in sensor-based affect detection. Pei et al. 

utilize LSTM recurrent neural networks to perform 

multimodal affect detection on a dataset containing both 

audio and video-based modalities [15]. Patwardhan et al. 

calculate spatiotemporal features from Kinect posture data to 

perform similar affect classification tasks using a hybrid 

model of supervised and rule-based learning [17]. In a similar 

fashion, Grafsgaard et al. explore the use of Kinect data to 

determine user engagement in an adaptive tutoring system for 

teaching introductory programming concepts [18]. The 

association between affective states, such as frustration and 

engagement, and learning outcomes was explored in prior 

work by Grafsgaard et al., using facial expression recognition 

algorithms applied to Kinect posture and gesture data [19]. 

DeFalco et al. utilize posture-based Kinect data for the 

development of affect detection systems for boredom, 

confusion, engagement, frustration, and surprise [7].  

Additional multimodal systems have been constructed to 

take advantage of biosignal modalities such as 

electroencephalogram data [20], electrodermal activity [21], 

and blood pulse volume (BVP) [11]. Harley et al. explore the 

relationship between facial expressions, EDA, and 19 

different self-reported affective states for each user engaged 

with MetaTutor, an adaptive  hypermedia-based learning 

environment [21]. The use of EEG, EDA, electromyographic 

(EMG) signals, and various other biosignals have been used 

with multimodal machine learning for the detection of low 

and high valence and arousal in subjects watching a series of 

videos [22]. 

There has been limited work on multimodal analytics that 

has addressed the issue of missing sensor data through the use 

of autoencoders. One exception is recent work that used a 

version of a denoising autoencoder [23] to learn a latent 

representation of artificially noisy data [16]. This can be used 

to represent missing data in a compact representation for the 

purpose of improving classification accuracy. In our work, we 

seek to actually reconstruct the missing data, as opposed to 

learning an encoded representation. Previous approaches 

have also focused on multimodal data generation using text 

and images, such as in [24] and [25]. However, that work did 

not use sensor-based multimodal data streams. There has 

been prior work investigating imputation of missing sensor 

data using various neural network-based fusion techniques 

[26]. One area where we improve upon prior approaches is by 

handling blocks of missing values, such as when a sensor is 

unavailable for a period of time. This is in contrast to 

imputing missing values that are sparsely distributed. Other 

communities, such as the medical community, often need to 

handle missing Electronic Health Record data, but typically 

use latent representations for classification rather than using 

deep neural architectures for imputation [27]. 

III. DATASET 

     Our investigation into multimodal affect detection utilizes 

a game-based learning environment focused on training 

military medical personnel, TC3Sim. This simulation 

environment was developed by Engineering and Computer 

Simulations (ECS) and is frequently deployed by the U.S. 

Army to provide realistic training simulations of combat 

medic scenarios. Within the game, users assume the first-

person role of a combat medic alongside various computer-

generated non-player characters (NPCs). The story-driven 

scenarios feature a series of combat-based simulations with 

the end result being injuries received by one or more NPCs. 

Participants are tasked with executing a number of tactical 

combat and medical tasks including securing the working 

perimeter, applying the correct treatment to the appropriate 

victims, and preparing for eventual evacuation. This work 

derives the primary dataset from sensor data corresponding to 

student interactions with four separate training scenarios from 

TC3Sim: a tutorial scenario, leg injury scenario, a patrol 

scenario involving an IED attack, and a scenario where the 

patient expires regardless of treatment received. A screenshot 

of the user’s perspective when engaging with an injured NPC 

is shown in Fig. 1. 

The dataset used to develop affect detectors was collected 

through a previous study consisting of observations of 119 

students (83% male, 17% female) as they engaged with 

TC3Sim. TC3Sim was deployed using the Generalized 

Intelligent Framework for Tutoring (GIFT), which is an open-

source software framework designed for building and 

deploying adaptive training systems. Each participant in the 

study worked at a single workstation, with the session lasting 

approximately one hour per user. The Microsoft Kinect for 

Windows 1.0 sensor was used to capture the posture of each 

individual throughout the duration of the training session. The 

Kinect was positioned to face directly at the individual, while 

capturing all head and body movements at a sampling rate of 

10-12 Hz. The data underwent a filtering process within GIFT 

before being exported for external processing. Additionally, 

Fig. 1. Screenshot of injured soldier in the TC3Sim game-based learning 

environment. 



each user wore an Affectiva Q-Sensor bracelet, which 

captured timestamped electrodermal activity, as well as the 

acceleration vectors for the sensor. Acceleration data was not 

utilized in this effort.  

     Ground truth labels of student affect were collected by two 

trained observers using a quantitative observation protocol 

called BROMP [28]. Each observer walked around the 

classroom, routinely observed each participant, and marked 

instances of affective behavior in 20-second intervals. The 

inter-annotator agreement between the two BROMP 

observers had a Cohen’s Kappa that was higher than 0.6. 

 Seven affective states were observed during this time: 

engaged, confused, bored, surprised, frustrated, contempt, 

and other. The resulting dataset consisted of 3,066 BROMP 

observations between the two observers. Any observation 

where there was disagreement between the two observers was 

removed from the dataset, leaving 755 BROMP observations 

during the subset of time that students used TC3Sim during 

the study. A total of 435 observations of engagement were 

recorded, with 174 instances of confused, 73 instances of 

boredom, 32 instances of frustration, 29 instances of surprise, 

and 12 as contempt. Due to the small number of observed 

instances of contempt and other, these affective states are not 

considered in this study.  

The Kinect sensor tracked and recorded data for 91 

vertices, of which we selected three based on prior work 

investigating Kinect-based affect detection [18]: top_skull, 

center_shoulder, and head. A total of 73 posture features 

were distilled from the Kinect vertex data providing a 

summary of the posture of the student, with the mean, 

variance, and standard deviation calculated over time 

windows of 5, 10, and 20 seconds preceding the BROMP 

observation. The Q-Sensor returned data consisting of a 

timestamp and an EDA reading. In a similar fashion to the 

Kinect posture data, summary statistics were calculated for 

the EDA modality including attributes such as min_eda, 

max_eda, variance_eda, and median_eda. These statistics 

were also calculated across time windows of 5, 10, and 20 

seconds prior to the BROMP observation. Additionally, the 

net change in the EDA readings across time windows of 3 and 

20 seconds was calculated, resulting in 18 EDA features.  

During the data collection process, the Q-Sensor 

experienced a significant amount of inconsistent behavior. 

This resulted in the loss of data for varying durations, and 

occasionally the EDA modality was lost for entire sessions. 

Out of the 755 data samples in our dataset, 333 instances were 

shown to have missing EDA data. The Kinect modality did 

not appear to suffer from significant data loss. To train our 

autoencoder, we derived a complete dataset from the original 

“raw” dataset by removing the 333 incomplete data samples, 

leaving a subset of 422 data samples containing both Kinect-

based posture data as well as the associated EDA readings. 

IV. METHODOLOGY 

     In this work, we handled missing data by employing a 

specialized variation of a denoising autoencoder that is based 

on Multimodal Autoencoders (MMAE) [16] [23]. The model 

used in this process involves feature-level fusion of the 

multiple modalities, which are then used to train an 

autoencoder neural network. The model is trained to 

reconstruct the original dataset by converting the dataset to a 

latent representation following artificial noise injection on 

select modalities. In the MMAE approach, an autoencoder is 

trained on artificially noisy data where all modalities are 

present. We begin by taking the complete set of data where 

all modalities are present, and we then normalize all features 

to be in the range [0,1]. Before passing the complete dataset 

through the autoencoder, each observation is injected with 

two types of noise: a simple masking noise and a complete 

removal of one or more modalities. For the simple masking 

noise, 5% of the features for the observation are randomly 

selected and these values are set to 0. For the removal of the 

modalities, this is performed by randomly selecting one or 

more modalities—for this work, we select one of either the 

Kinect or EDA modality—and setting each feature within this 

modality to -1. The MMAE is then trained to reconstruct the 

original data by using this compromised dataset. This process 

enables the autoencoder to more accurately reproduce a full 

multimodal dataset when faced with missing or invalid data 

within certain modalities.  

Once the MMAE has been trained on the complete data 

where all modalities are present, we can feed the full dataset, 

including missing data, to the autoencoder. The output of the 

autoencoder network includes imputed values for all 

observations. To be consistent with the training data, all 

features of the full dataset are normalized to be in the range 

[0,1]. The values that are missing or invalid, which can 

include blank cells, unique identifiers, and other 

representations, are all set to -1. We feed the full dataset 

through the MMAE network. Instead of using the latent layer 

of the autoencoder as the input to classification algorithms, as 

in [16], we propagate the full set of observations through the 

trained network, including the decoder portion of the MMAE, 

resulting in output of the same dimensionality as the input. 

The output then contains imputed values for all original 

values. We take advantage of having the original values 

where data was not missing, and we replace the 

corresponding imputed values with their original values. To 

emphasize this, we end the imputation process with our 

original full dataset where missing values are replaced with 

imputed values produced from the trained autoencoder. A 

visual representation of this process is found in Fig. 2, for a 

dataset containing m attributes and n data samples. 

This approach confers a significant advantage over using 

the latent representation of the data: it yields an interpretable 

set of features. Performing feature selection on this imputed 

data can then generate a more human-understandable set of 

features, as opposed to the result of the latent autoencoder 

representation. In addition, it also affords the ability to use 

other dimensionality reduction techniques such as PCA or 

even another neural network architecture to find more 

compact representations of the data. 

The autoencoder used to perform this imputation has a 

single hidden layer with 30 nodes, which performed well in 

terms of input reconstruction. The layers within the 

autoencoder utilized a sigmoidal activation function due to 

the normalization of the training data. We trained the model 

using the ADADELTA optimization method [29] for 5,000 

epochs, using mean squared error as the cost function. The 

training and forward propagation of the missing data was 

performed with the Keras deep learning toolkit with a 

TensorFlow backend. 

Once the missing data has been imputed, we still have the 

problem of class imbalance in our dataset. Thus, for each 

affective state, we take the input data with imputed values and 

then oversample the minority class. We oversample each 

minority class observation by cloning at a rate equivalent to 

the ratio of the majority to minority class labels for that 



affective state, resulting in five different oversampled 

datasets corresponding to the five affective states.  

Next, we establish a data processing pipeline with the 

objective of investigating a set of classifiers to determine the 

optimal affect detection model for each individual affective 

state. Because of the high number of available features within 

our multimodal dataset, we employ principal component 

analysis (PCA) to reduce the number of dimensions in the 

classification task. PCA helps remove noise from a high 

dimensionality relative to the size of the data, and it accounts 

for potential multicollinearity among features. For fair 

comparison in our experiments, we transform the data with 

PCA using the same number of components that the latent 

layer of the autoencoder has in terms of dimensionality. These 

new orthogonal features will be comparable to the latent 

features produced by the encoder portion of the autoencoder. 

To determine the optimal classifier for each affective 

state, we investigate five different model types: support 

vector machine (SVM), J48 decision tree, JRip propositional 

rule learner, logistic regression, and deep neural network. 

Each classifier was trained using student-level 10-fold cross-

validation, meaning that data from a single student session is 

never split across both the training and test sets, which could 

lead to positively biased results. Oversampled positive 

instances of emotions were also removed from the test set, to 

avoid inflated results as well. 

After the optimal classifier for each affective state was 

determined, we evaluated different types of multimodal data 

fusion to determine if feature-level fusion or decision-level 

fusion boosted the performance of the classifier. We 

evaluated three data fusion variations. Fig. 3 shows a visual 

representation of the three data fusion techniques. Early 

Fusion 1 involves concatenating the posture and EDA 

features prior to the PCA dimensionality reduction and 

training a single classifier on a dataset containing n attributes. 

Early Fusion 2 uses PCA dimensionality reduction on each 

individual modality, producing two individual datasets, each 

consisting of n/2 attributes. These attributes are then 

concatenated in a similar fashion to Early Fusion 1, and 

subsequently used to train a single classifier.  

Late Fusion involves performing PCA dimensionality 

reduction on two separate modalities with each resulting data 

channel containing n attributes each. Each data channel is 

then used to train two separate unimodal classifiers. The 

output of each classifier is a two-element confidence vector 

representing whether a certain data sample contains a positive 

or negative instance of the target affective state. A voting 

schematic is then used to determine the overall representative 

prediction of the data fusion system. We experiment with two 

different voting schematics: highest confidence level, and 

highest average confidence level. For the former, the class 

with the highest confidence level is selected as the prediction. 

For the latter, the confidence levels for each class are 

averaged across each classifier, and the class with the highest 

average is selected as the prediction. This data pipeline was 

implemented and evaluated using RapidMiner 9.0 [32], while 

the data filtering and distillation, noise injection, and data 

imputation were performed using Python 3. 

     Finally, we evaluate classifiers trained on the encoded data 

produced by the encoder portion of the autoencoder [16] 

against the classifiers trained on the decoded, reconstructed 

data. Our final results from the multimodal classifiers are then 

compared with unimodal classifiers trained solely on the 

posture data to determine whether the addition of the EDA 

modality through data imputation improved affect detector 

performance.  

V. RESULTS AND DISCUSSION 

We compare our method of data imputation to mean 

imputation, a commonly used approach that imputes missing 

data points using the mean of the available data for a given 

feature [30]. We train two separate support vector machines, 
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one on a reconstructed dataset using our autoencoder, and the 

other trained on a dataset completed using mean imputation. 

Cohen’s Kappa [31] is used as our primary evaluation metric 

for classifier performance due to its ability to determine a 

classifier’s ability to perform at a higher success rate than 

chance. The multimodal dataset is comprised of vectors that 

contain posture and EDA data concatenated at a feature level. 

Table I shows a comparison of Kappa values for each trial 

with each affective state, with the best imputation method for 

each classifier shown in bold. Results indicate that 

autoencoder-based data imputation yields higher-performing 

classifiers than mean imputation across all five affective 

states. The results of the best classifier selected for each 

affective state are shown in Table II, with Cohen’s Kappa, 

Area Under Curve (AUC), accuracy, and F1 Scores shown.  

The approach to handling the multimodal data in this 

experiment was Early Fusion 1. The SVM achieved the 

highest classification performance for three affective states: 

bored, confused, and surprised. JRip and J48 achieved the 

highest performance for frustrated and engaged, respectively. 

Logistic regression performed relatively well for two 

affective states (confused and bored) but did not achieve the 

highest performance for any affective state. Notably, deep 

neural networks performed less effectively than the best 

classifier for each category and yielded poor results for a few 

affective states as well. This can possibly be attributed to an 

insufficient amount of training data, as well as overfitting of 

the autoencoder or the classifier itself. 

Following this procedure, we used each affective state’s 

top-performing classifier to evaluate Early Fusion 2 and Late 

Fusion. Additionally, we evaluated Late Fusion based on two 

voting schematics: highest confidence (HC) and highest 

average confidence (HAC). Table III displays the results of 

Early Fusion 2 and both variations of Late Fusion.  

     The results in Table III indicate that variations of data 

fusion do not improve the results of the classifier for any of  

the affective states, and in several cases, the results were  

significantly worse. One explanation for the relatively poor  

performance of Early Fusion 2 is that this method forces an 

even balance of attributes across modalities used to train the 

classifier. While PCA in Early Fusion 1 is able to select its 

own ratio of 30 principle components from the posture and 

EDA modalities to comprise the 30 attributes for the 

classifier, Early Fusion 2 forces each PCA algorithm to select 

exactly 15 attributes per modality. Thus, if a modality such as 

the EDA data is inherently less informative than other 

modalities, Early Fusion 2 is replacing potentially useful 

attributes with less helpful attributes, resulting in lower 

performances across the classifiers. 

      Previous work has found that EDA data does not have a 

tightly-coupled relationship with various affective states, as 

compared to other modalities such as facial expression [21]. 

It is also a possibility that the EDA modality does not contain 

enough variance across multiple instances of each affective 

state for each classifier to distinguish between them 

effectively. This problem is amplified during examples of 

mild or suppressed expressions of affective states. 

Additionally, modalities such as the Kinect posture data 

inherently contain higher dimensionality than the EDA data 

and therefore potentially contain more distinguishing factors 

between affective states. Data fusion methods such as Early 
Fusion 2 and Late Fusion embrace an equal emphasis on all 

modalities present, which likely led to a tradeoff between 

informative Kinect features and less informative EDA 

features that adversely impacted classifier performance for 

those two data fusion techniques. However, the EDA 

modality did appear to contain useful contextual information 

that mostly improved classifier performance when used in 

conjunction with the Kinect posture modality. 

     To determine whether the addition of the EDA modality 

was indeed beneficial to the performance of each classifier, 

we trained a unimodal classifier on the complete posture data  

TABLE II. Results for best-performing classifier for each affective 

state using Early Fusion 1.  
 

Bored 

Classifier Kappa AUC Accuracy F1 Score 

SVM 0.1100 0.6160 0.6897 0.2350 

Confused 

Classifier Kappa AUC Accuracy F1 Score 

SVM 0.1340 0.6210 0.6398 0.3685 

Engaged 

Classifier Kappa AUC Accuracy F1 Score 

J48 0.1460 0.5650 0.5799 0.6014 

Frustrated 

Classifier Kappa AUC Accuracy F1 Score 

JRip 0.078 0.5550 0.9174 0.1389 

Surprised 

Classifier Kappa AUC Accuracy F1 Score 

SVM 0.154 0.5000 0.7007 0.2736 

TABLE I. Comparison between mean imputation and autoencoder 

imputation for classifying student affective states. 

Affective State Mean Imputation Autoencoder 

Bored 0.087    0.184 

Confused 0.068    0.107 

Engaged 0.029    0.037 

Frustrated 0.023    0.049 

Surprised 0.019    0.020 

TABLE III. Comparison of multimodal data fusion techniques 

with best performing classifiers for each affective state. 

Bored 

Fusion Method (SVM) Kappa 

Early Fusion 1 0.1100 

Early Fusion 2 0.0650 

Late Fusion (HC) 0.0960 

Late Fusion (HAC) 0.1059 

Confused 

Fusion Method (SVM) Kappa 

Early Fusion 1 0.1340 

Early Fusion 2 0.0730 

Late Fusion (HC) 0.02932 

Late Fusion (HAC) 0.02932 

Engaged 

Fusion Method (J48) Kappa 

Early Fusion 1 0.1460 

Early Fusion 2 -0.020 

Late Fusion (HC) 0.0651 

Late Fusion (HAC) 0.0651 

Frustrated 

Fusion Method (JRip) Kappa 

Early Fusion 1 0.0780 

Early Fusion 2 0.0070 

Late Fusion (HC) 0.0186 

Late Fusion (HAC) 0.0259 

Surprised 

Fusion Method (SVM) Kappa 

Early Fusion 1 0.1540 

Early Fusion 2 0.0170 

Late Fusion (HC) -0.0172 

Late Fusion (HAC) -0.0136 

  



 only and used the classifiers’ performance as a baseline for 

each affective state. The baselines and best results from the 

multimodal approach for each affective state (Early Fusion 1) 

are shown in Table IV. The addition of the partially imputed 

EDA modality improved classifier performance on all 

affective states with the lone exception of boredom.  

However, a significant majority of results indicate that 

multimodal data imputation for affect detection is beneficial 

relative to unimodal classification techniques.     

     Prior research demonstrated the effectiveness of using the 

encoded latent feature vectors produced by an autoencoder to 

train a classifier [16]. We compare this approach to our 

approach of reconstructing the original dataset using 

decoding of latent representations. After producing a 

reconstructed dataset, we replace any values that have 

associated existing values in the original dataset. This process 

ensures that only the values determined to be missing or 

invalid are imputed, and values that existed in the original 

dataset are not overwritten with imputed values. Upon 

completion of this process, we train the same selected 

classifier model for each affective state on two variations of 

data: the encoded latent representations, and the decoded, 

reconstructed data. The comparison of each classifier’s 

performance on the encoded and decoded data is shown in 

Table V. 

    The performance of the classifiers trained on the 

reconstructed dataset lead the classifier to achieve higher 

performance for every affective state. A possible explanation 

includes the preservation of original values after the data 

reconstruction. This ensures that the dataset contains the 

original underlying, complex relationships between multiple 

attributes, which often is an important aspect of multimodal 

machine learning [10]. This problem extends to the encoded 

dataset, as reducing the dimensionality through the latent 

representation contains the inherent risk of losing contextual 

information that may affect the performance of a classifier.  

VI. CONCLUSION 

     Missing data is a persistent problem in sensor-based 

computational systems, particularly in affect detection for 

adaptive learning technologies. Given recent interest in 

multimodal affect detection, it is critical to devise effective 

methods for coping with situations where one or more 

modalities suffer from noisy or incomplete data. Removing 

incomplete data samples risks loss of important contextual 

information contained within inter-related modalities. 

Standard imputation methods, such as mean imputation, 

allow all data samples to be retained, but they only retain 

contextual information across a single feature. 

     We have introduced a multimodal data imputation 

framework that uses an autoencoder to capture contextual 

relationships across attributes spanning multiple modalities. 

We investigated the framework using Kinect-based posture 

tracking and Q-Sensor-based electrodermal activity data 

collected during student interactions with a game-based 

learning environment for emergency medical training. An 

empirical evaluation shows that the multimodal data 

imputation framework significantly improves the 

performance of multimodal sensor-based affect detection.  

     There are several promising directions for future work. 

Additional feature reduction and feature selection techniques 

should be explored to investigate their impact on classifier 

performance. The multimodal data imputation framework 

should be investigated across a broader range of modalities, 

including student facial expression and gesture, as well as 

additional datasets to evaluate the generalizability of our 

overall multimodal data pipeline. Finally, there is significant 

promise in investigating more sophisticated denoising 

techniques related to the framework’s noise injection 

approach, which holds significant potential for further 

improving the performance of multimodal affect detectors. 
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TABLE V. Comparison of decoded dataset vs encoded dataset on 
classifier performance. 

 

Bored (SVM) 

Classifier Kappa AUC Accuracy F1 Score 

Decoded 0.1100 0.6160 0.6897 0.2350 

Encoded 0.093 0.649 0.6247 0.2270 

Confused (SVM) 

Classifier Kappa AUC Accuracy F1 Score 

Decoded 0.1340 0.6210 0.6398 0.3685 

Encoded 0.0530 0.5540 0.5633 0.3072 

Engaged (J48) 

Classifier Kappa AUC Accuracy F1 Score 

Decoded 0.1460 0.5650 0.5799 0.6014 

Encoded -0.0200 0.492 0.5339 0.6587 

Frustrated (JRip) 

Classifier Kappa AUC Accuracy F1 Score 

Decoded 0.0780 0.5550 0.9174 0.1389 

Encoded -0.0250 0.4780 0.8750 0.0204 

Surprised (SVM) 

Classifier Kappa AUC Accuracy F1 Score 

Decoded 0.1540 0.5000 0.7007 0.2736 

Encoded 0.0070 0.3940 0.6671 0.0543 

     

TABLE IV. Comparison of Kinect-only unimodal vs. multimodal 

classifiers. 
 

Bored (SVM) 

Classifier Kappa AUC  Accuracy F1 Score 

Unimodal 0.1280 0.6310 0.7817 0.2235 

Multimodal 0.1100 0.6160 0.6897 0.2350 

Confused (SVM) 

Classifier Kappa AUC Accuracy F1 Score 

Unimodal 0.0280 0.5490 0.6151 0.1913 
Multimodal 0.1340 0.6210 0.6398 0.3685 

Engaged (J48) 

Classifier Kappa AUC Accuracy F1 Score 

Unimodal 0.0480 0.5480 0.5496 0.6353 

Multimodal 0.0710 0.5960 0.5774 0.6904 

Frustrated (JRip) 

Classifier Kappa AUC Accuracy F1 Score 

Unimodal -0.001 0.4870 0.8783 0.0606 

Multimodal 0.0780 0.5550 0.9174 0.0926 

Surprised (SVM) 

Classifier Kappa AUC Accuracy F1 Score 

Unimodal -0.0210 0.4110 0.5913 0.0435 

Multimodal 0.1540 0.5000 0.7007 0.2736 
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