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A B S T R A C T

Recent years have seen the rapid adoption of artificial intelligence (AI) in every facet of society. The ubiquity
of AI has led to an increasing demand to integrate AI learning experiences into K-12 education. Early learning
experiences incorporating AI concepts and practices are critical for students to better understand, evaluate,
and utilize AI technologies. AI planning is an important class of AI technologies in which an AI-driven agent
utilizes the structure of a problem to construct plans of actions to perform a task. Although a growing number
of efforts have explored promoting AI education for K-12 learners, limited work has investigated effective and
engaging approaches for delivering AI learning experiences to elementary students. In this article, we propose
a visual interface to enable upper elementary students (grades 3–5, ages 8–11) to formulate AI planning tasks
within a game-based learning environment. We present our approach to designing the visual interface as well
as how the AI planning tasks are embedded within narrative-centered gameplay structured around a Use-
Modify-Create scaffolding progression. Further, we present results from a study of upper elementary students
using the visual interface. We discuss how the Use-Modify-Create approach supported student learning as well
as discuss the misconceptions and usability issues students encountered while using the visual interface to
formulate AI planning tasks.
. Introduction

Advances in artificial intelligence (AI) are transforming society and
he workplace of the future [1]. With a wide array of capabilities
anging from automated reasoning to machine learning and natural
anguage processing to computer vision, AI is becoming a fundamen-
al tool that people depend on to perform their work and carry out
heir daily lives [2,3]. Nations around the world are recognizing the
mportance of AI and taking steps to develop strategies for creating
nd sustaining their AI research and development workforce (e.g.,
4–6]). This has generated a vital need to foster AI literacy among
-12 students to enable them to successfully navigate the future where
I will be ubiquitous [7].

AI literacy centers on enabling individuals to understand and evalu-
te AI, communicate and collaborate with AI, and effectively use AI [8].
ecognizing that AI literacy is a critical competency for all students,

∗ Corresponding authors.
E-mail addresses: kpark8@ncsu.edu (K. Park), bwmott@ncsu.edu (B. Mott), sylee@ncsu.edu (S. Lee), agupta44@ncsu.edu (A. Gupta), katemart@iu.edu

K. Jantaraweragul), glaze@indiana.edu (K. Glazewski), jascrib@iu.edu (J.A. Scribner), aleftwic@indiana.edu (A. Ottenbreit-Leftwich), chmelosi@indiana.edu
C.E. Hmelo-Silver), lester@ncsu.edu (J. Lester).

1 https://www.readyai.org
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efforts are underway to incorporate AI learning opportunities within
K-12 education [9,10], as well as to develop guidelines for K-12 AI
education [11]. For example, a working group on AI K-12 education
sponsored by the Association for the Advancement of Artificial Intelli-
gence (AAAI) and the Computer Science Teachers Association (CSTA)
has identified a set of big ideas in AI that all students should understand
through a collaboration between AI experts and K-12 teachers. These
big ideas include Perception, Representation & Reasoning, Learning, Natu-
ral Interaction, and Societal Impact [11]. Given the importance of early
learning experiences for fostering students’ perceptions and dispositions
towards STEM, creating engaging and effective AI learning activities for
elementary school students is an important endeavor.

Responding to the growing need to provide K-12 students with AI
learning opportunities, researchers have developed tools and curricula
that enable K-12 students to interact with and learn about AI tech-
nologies and ideas. These include online tutorial lessons and hands-on
activities on a range of AI-related topics at various levels [12,13],
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programs to teach big ideas in AI,1 and interactive visual interfaces
for teaching machine learning and AI ethicsI.2 As visual interfaces,
specially block-based programming, have shown promise for teaching
ntroductory computer science and computational skills [14–17], they
ave been actively employed to support teaching AI concepts and
ractices as well [18–23]. Well-designed visual interfaces, languages,
nd tools tailored to specific users are critical to support learning
nd enable users to effectively express complex computational tasks
24–26]. Students can create their own artifacts (e.g., image or speech
ecognition models, conversational AI agents) by interacting with these
isual interfaces and tools [18,19,27].

In response to the need for engaging AI learning experiences for
lementary school students, we are designing and developing Prima-
yAI, a game-based learning environment that enables students to
ain experience with AI-infused problem solving using in-game visual
nterfaces [28]. Leveraging the benefits of game-based learning [29],
rimaryAI aims to create effective and engaging AI learning experi-
nces. Prior work has shown that well-designed game-based learning
nvironments enable students to develop problem-solving skills, com-
unicate and collaborate with other students, and actively participate

n rich virtual contexts [30,31]. Gameplay in PrimaryAI is structured
round overarching quests consisting of a set of missions for students
o complete. One of the quests in PrimaryAI focuses on Representation
Reasoning, by introducing students to AI planning in the context of

sing a virtual semi-autonomous robot to gather data on an endangered
pecies. AI planning investigates techniques to enable AI-driven agents,
uch as robots, to utilize the structure of a problem to construct
lans of actions to perform a task [32]. In this article, we present
ur work to design a visual interface for PrimaryAI to enable upper
lementary students (grades 3–5, ages 8–11) to formulate AI planning
asks during gameplay that leverages a Use-Modify-Create scaffolding
rogression [33].

We investigate three key research questions focused on introducing
I planning to upper elementary students using a visual interface:

• RQ1: How is the proposed visual interface received by students and
what hurdles do they encounter while using it?

• RQ2: How does the proposed visual interface, in conjunction with the
Use-Modify-Create scaffolding progression, assist students in express-
ing AI planning tasks?

• RQ3: What misunderstandings do students have when formulating AI
planning tasks using the proposed visual interface?

o investigate these questions, we analyze data collected from forty-
wo upper elementary students using the PrimaryAI game-based learn-
ng environment and the proposed visual interface. Qualitative and
uantitative analyses of video recordings and trace log data of students
sing the visual interface, as well as student interview responses,
ndicate that the proposed visual interface, in combination with the
se-Modify-Create scaffolding progression, has significant potential for
ffectively supporting students in learning AI planning concepts.

. Related work

The research presented in this article extends our previous work,
hich provided a qualitative analysis of students interacting with

he proposed visual interface to formulate AI planning tasks [34].
n the current work, we complement our previous analysis with an
xamination of fine-grained gameplay interaction log data that was
ecorded as students interacted with PrimaryAI in an additional data

collection held in an elementary classroom setting. We conducted a
quantitative analysis of the student interaction data in order to extract
the latent characteristics of student engagement with the proposed
visual interface, which provides additional insight into our research
questions. In the remainder of this section, we provide an overview of
related work on efforts to bring AI learning experiences to K-12 settings
as well as visual interfaces and tools for supporting K-12 Computer

Science and AI learning.

2

2.1. K-12 AI education

As AI has grown in prevalence, it has become increasingly important
to educate students to learn and think critically about AI [35,36]. A
number of recent efforts have started to explore how to integrate AI
into the K-12 curriculum and foster AI literacy among K-12 students.
The AI4K12 initiative proposed the Five Big Ideas of what K-12 students
should learn about AI [11]. Similarly, researchers have developed
K-12 AI literacy resources that include a wide range of hands-on
online AI learning activities for K-12 students to learn about AI.3 For
example, ReadyAI4 is creating pre-configured toolkits, such as AI-in-a-
Box, that includes both hardware and software to teach AI courses to
K-12 students. Additionally, Curiosity Machine5 and AI with MIT App
Inventor6 [12,13] are online tools to teach AI concepts and the basics
of machine learning to K-12 students. AI for Oceans Code.org7 provides
an AI educational platform that teaches K-12 students about AI and
machine learning by allowing them to explore how AI can help with
global environmental issues. Work is also underway to develop modules
for K-12 students to learn about AI and how to use it responsibly [37].
For instance, researchers have created the AI and Ethics for Middle
School curriculum to teach middle school students about ethical issues
in AI, such as bias in machine learning algorithms and ethical design
principles [10,38]. Bilstrup et al. [39] presents a card-based design
workshop by allowing students to explore how ethical and moral
choices reflect their own machine learning applications. Our work
on PrimaryAI fills a gap in the ongoing work by investigating how
game-based learning can be used to integrate AI education into upper
elementary classrooms.

2.2. Visual interfaces for K-12 computer science education

Providing a simple and intuitive visual interface for K-12 students
who are unfamiliar with expressing computational tasks poses signif-
icant challenges. Although there are many text-based programming
tools for K-12 students (e.g., Gidget [40], CodeCombat [41], CodeMon-
key8), researchers are increasingly exploring visual interfaces to help
novices learn to program. This is especially appealing for young learn-
ers, where tools are supported by intuitive and novice friendly inter-
faces without considerable guidance or supervision. There are a variety
of block-based visual programming languages, such as Blockly [14],
Scratch [15], Snap! [16], Tynker,9 and MIT App Inventor that have
been developed and utilized in K-12 classrooms. Smith et al. [42]
developed an approach to use block-based programming for inter-
active storytelling to engage upper elementary students in computa-
tional thinking. Bradbury et al. [43] investigated how to effectively
design collaborative programming environments for elementary stu-
dents, where students used a block-based programming language called
NetsBlox [44]. Hill et al. [45] introduced LaPlaya, a block-based pro-
gramming language designed specifically for students in grades 4–6.
Percival et al. [46] implemented CryptoScratch, a Scratch platform-
based framework that allows students to learn how to use cryptographic
algorithms such as AES, RSA, and SHA2. Although these works provide
friendly and effective interfaces for K-12 students, they do not support
elementary students in learning AI concepts. Our approach enables
block-based programming to be tightly integrated into gameplay that
features AI problem solving within a game-based learning environment.
Prior work has also looked at using gameplay to teach programming,
such as Blockly Games10 and Lightbot [47]; however, this work did

3 https://aieducation.mit.edu
4 https://www.readyai.org
5 https://www.curiositymachine.org/lessons/lesson/
6 https://appinventor.mit.edu/
7 https://code.org/oceans
8 https://www.codemonkey.com/
9 https://www.tynker.com/

10
 https://blockly.games/
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not address learning AI concepts. Our efforts build upon these prior
endeavors to design a visual interface for upper elementary students to
enable students to formulate AI planning tasks in a game-based learning
environment.

2.3. Visual interfaces for K-12 AI education

Efforts are underway to develop visual interfaces, tools, and cur-
ricula to support K-12 students to engage with AI tools and learn
AI concepts and practices. These visual tools enable students to ex-
plore machine learning, computer vision, and other AI technologies
by creating opportunities for students to explore and learn about AI
on their own. For example, Google’s Teachable Machine11 [18] uses a
web-based interface that helps students easily create machine learning
models without having any prior experience in coding. It enables
students to train and test machine learning models to classify images,
poses, and sounds. Similarly, AI Programming for eCraft2Learn12 is
n extension to Snap! [16] that enables students to build their own
I program using block-based programming. AI blocks are used to
uild custom AI models involving image and speech recognition, and
eural network application development. Another example is Cog-
imates [19], an open-source platform for AI literacy for students
etween 7–14 years old [15]. Cognimates allows students to participate
n creative programming activities that includes building their own
I models to perform image classification, speech recognition, and
entiment analysis. Similarly, other tools also extend block-based pro-
ramming languages to support building machine learning applications
or students unfamiliar with programming. Machine Learning for Kids
ML4Kids) is an extension to Scratch and helps students build simple
I programs by leveraging AI models powered by IBM Watson [20].
L4Kids provides an easy-to-use environment for building machine

earning models to recognize images, text, or sounds. It enables stu-
ents to train machine learning models and use them in their own
rojects. PoseBlocks [21] provides a custom block-based programming
nterface developed on top of Scratch, supporting body, hand, face,
nd emotion recognitions to help middle school students explore AI
oncepts. PoseBlocks integrates with Google’s Teachable Machine to
uild custom image, audio, and pose models from body-sensing cam-
ra and microphone inputs. In contrast, Scratch Text Classifier [22]
elps middle school students become more knowledgeable about how
lassifiers work, allowing students to create their own project using
custom created text classifier. AI Snap! blocks [23] is an extension

o Snap! allowing students to create machine learning applications by
tilizing a set of predefined machine learning blocks. Convo [27,48]
s a conversational programming interface using Conversational AI in
IT App Inventor, which has been used in K-12 settings to teach

tudents AI concepts as they create their own conversational AI agents.
lpacaML [49] enables students to build ML gesture classifier models

o be integrated into Scratch projects. These tools help to systematically
reate AI curriculum and tools for K-12 students to learn AI concepts.
owever, most of the prior work has focused on teaching machine

earning with either middle or high school students. Little work has
nvestigated effective and engaging approaches for promoting upper
lementary students to learn AI concepts. The current research explores
visual interface that allows upper elementary students to formulate
I planning tasks within a game-based learning environment.

. PrimaryAI game-based learning environment

PrimaryAI is a game-based learning environment that is being de-
igned to support AI education for upper elementary students (Fig. 1).
he game is designed to be implemented in classrooms with an asso-
iated AI curriculum that incorporates ‘‘unplugged’’ learning activities.

11 https://experiments.withgoogle.com/ai/teachable-machine/
12 https://ecraft2learn.github.io/ai/
3

The classroom activities help introduce students to AI concepts prior
to encountering them in the game. This section provides an overview
of the PrimaryAI game-based learning environment as well as discusses
the design of the proposed visual interface integrated in the game to
support upper elementary students in formulating AI planning tasks.

3.1. Game design

PrimaryAI enables students to learn about AI by engaging in a
rich storyworld in which they address life science problems using in-
game AI tools. In the game, students investigate the recent declining
population of yellow-eyed penguins on New Zealand’s South Island.
Throughout students’ exploration in the game, they complete a series
of AI-centric quests that help them gather data and evaluate hypotheses
regarding the interactions among wildlife on the island. The learning
environment’s curricular content is aligned with the Next Generation
Science Standards [50] as well as concepts and practices from the K-12
Computer Science Framework [51] oriented towards age-appropriate
AI concepts.

PrimaryAI is designed to promote student engagement through four
intrinsic motivators as identified in Lepper’s classic work on intrinsic
motivation in learning: challenge, curiosity, control, and contextualiza-
tion [52].

• Challenge: throughout the learning experience, students are pre-
sented with a series of game-based challenges that introduce them
to AI concepts. Students use visual interfaces, inspired by work
in block-based programming, to develop solutions to AI-centric
challenges presented in the game.

• Curiosity : as students explore the storyworld, their investigation
is driven by an overarching mystery—What is causing the recent
decline in the native population of yellow-eyed penguins on the
island? The learning environment encourages students to solve
the mystery by gathering data and analyzing data about the local
penguin populations.

• Control: as students investigate the mystery, they are free to
choose how to navigate the virtual world and interact with the
environment. For example, students can create their own solu-
tions to AI planning tasks using the in-game visual interface,
which provides them with creative flexibility and a strong sense
of choice.

• Contextualization: the learning environment uses a narrative con-
text that integrates fantasy elements based around real-world
struggles, e.g., declining penguin populations, to contextualize
the students’ learning activities within. Students utilize a vir-
tual semi-autonomous robot, disguised as a penguin, to navigate
around yellow-eyed penguin colonies to collect data. These ac-
tivities draw on both cognitive and affective aspects of problem
solving to motivate students during their learning.

PrimaryAI gameplay features quests that cover key AI concepts: AI
Planning, Machine Learning, and Computer Vision. In one of the quests,
students learn that the yellow-eyed penguins are notably shy around
humans and are asked to collect data using a robot disguised as a
penguin—playfully referred to as RoboPenguin in the game. Students
learn to formulate AI planning tasks using our proposed visual interface
to control the robot to collect photos of wildlife from designated areas
on the island (e.g., beach or nest). In another quest, students are
asked to review the collected photos and apply labels to each photo,
so that they can train the robot to learn how to correctly classify
wildlife photos as either penguins, weasels, or other wildlife. This quest
introduces students to supervised machine learning concepts. In the
final quest, students learn about and use computer vision techniques
to further enhance the robot’s capabilities. For example, providing the
robot with the ability to accurately recognize predators of the penguins,
which might be contributing to the recent decline in the penguin
population. The version of PrimaryAI used in the study described in this

https://experiments.withgoogle.com/ai/teachable-machine/
https://ecraft2learn.github.io/ai/
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Fig. 1. The PrimaryAI Game-Based Learning Environment.
rticle, focuses on the AI planning quest, which introduces AI planning
oncepts; the other quests are under development.

To help students gain a deeper understanding of the AI concepts
overed in PrimaryAI, the quests are organized using a Use-Modify-
reate (UMC) scaffolding progression, which has shown promise for
romoting the acquisition and development of computational thinking
kills [33]. For example, PrimaryAI’s quest on AI planning uses a UMC
caffolding progression consisting of three missions: (1) Use: students

are initially provided a fully formulated AI planning task in the visual
interface in order to support them in becoming familiar with the inter-
face and the planning tasks being addressed, (2) Modify : students are
asked to manipulate blocks in a partially formulated AI planning task
using the visual interface, (3) Create: students are asked to formulate a
new AI planning task from scratch using the visual interface. We expect
that this UMC approach will help scaffold student learning during the
AI planning quest.

3.2. Visual interface for formulating AI planning tasks

The visual interface for formulating AI planning tasks in PrimaryAI
is shown in Fig. 2. This interface enables upper elementary students to
specify AI planning tasks through Initial States, Possible Actions, and Goal
tates. The design of the interface was refined through several rounds
f iterative feedback and refinement, with the goal of delivering a
lear concept of AI planning while interacting with the visual interface.
tudents can observe how each component in AI planning contributes
o generated plans and how different AI planning task constructions
ffect the AI robot’s action in the game. The visual interface consists of
hree main functional areas: Control Panel, Block Panel, and AI Planning
anel. The Control Panel along the top of the interface enables students
o deploy the robot in the virtual storyworld using their formulated AI
lanning task, revisit the mission briefing describing the task that needs
4

to be accomplished using the robot, and reset the AI Planning Panel to
its original configuration for the mission in case the student would like
to start over.

The Block Panel on the left side of the interface allows students
to select blocks from two different categories: States and Actions. The
blocks are color coded based on the part of the AI planning task
specification that they correspond with and can only be dropped in the
appropriate columns of the AI Planning Panel. For example, students
can only move blocks under the Actions category into the Possible
Actions workspace of the AI Planning Panel. The Block Panel also
includes a trash can icon, which allows students to delete unwanted
blocks from the workspaces by dropping the block onto the icon.

The AI Planning Panel, which occupies most of the interface,
consists of three vertically-divided workspaces that represent the key
components of the AI planning task specification. The Initial States
workspace is pre-populated by the game based on the context of the
mission (e.g., robot is currently located at the research station on the
island), which allows students to understand the starting state for the
robot and think about which actions and goals are appropriate for
achieving the objective of the mission. The Possible Actions workspace
allows students to specify which actions should be considered, while
creating a plan for achieving the mission objective. Finally, the Goal
States workspace is used to specify the goals that need to be achieved
in order for the mission to be successfully completed. As students drag
blocks from the Block Panel to the workspaces, they are highlighted
in yellow when the block is over a valid workspace, otherwise the
blocks are highlighted in red. When a block is dropped onto an invalid
workspace (i.e., highlighted in red), the block snaps back to its original
location to help ensure students learn to place blocks correctly.

Using the visual interface, students specify AI planning tasks for
the robot penguin. Students drag blocks from the States and Actions
block categories to specify the AI planning task based on the mission’s
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Fig. 2. The visual interface for formatting AI planning tasks.
Fig. 3. In-game screenshot of plan being executed by the robotic penguin based on a formulated AI planning task.
scenario (e.g., ‘‘Take three pictures of penguins at the beach and come
back to the station’’). After specifying the AI planning task using the
visual interface, students can watch the robot penguin plan and execute
actions to achieve the goals based on their formulated AI planning task.
Fig. 3 shows the view of the robot penguin students see as it executes
the plan. The AI Dashboard on the left side of the screen shows students
aspects of the plan as the robot executes the plan (e.g., goals, current
actions). The current action is also presented in a thought bubble
above the robot penguin’s head to help students follow what action
is currently being executed. This indicator is also used to notify the
student whether a goal is being achieved by the robot, or if it is unable
to create a plan based on the student’s AI planning task formulation.

To develop the visual interface for specifying AI planning tasks, we
iteratively evaluated several design alternatives with elementary school
teachers who have been co-designing the PrimaryAI curriculum with the
5

research team. Early mockups of the interface were created using the
Blockly developer toolkit13 to support design discussions with the teach-
ers (Fig. 4). The first mockup we worked on with teachers is shown in
Fig. 4a where a nested block was utilized to represent the AI planning
task specification (i.e., initial state, possible actions, and goals) where
state and action blocks could be attached to it. This approach had
several advantages: (1) students would likely find it easy to manipulate,
since it is similar to other block-based programming environments, and
(2) we could leverage an existing block-based programming toolkit
based on Blockly that was designed specifically to integrate with game-
based learning environments [53], which would speed up development.

13 https://developers.google.com/blockly/guides/create-custom-blocks/
blockly-developer-tools

https://developers.google.com/blockly/guides/create-custom-blocks/blockly-developer-tools
https://developers.google.com/blockly/guides/create-custom-blocks/blockly-developer-tools
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Fig. 4. Three mockup designs for AI planning task formulation from early design iterations. (a) Nested blocks, (b) ‘‘Set’’ blocks, and (c) Checkboxes.
However, after discussing the approach with our partner elementary
school teachers, several concerns were identified: (1) stacking the state
and action blocks vertically might inadvertently suggest to students that
the states and actions are sequential in nature, and (2) using a more
traditional block-based programming design might give students the
impression that they can program the AI agent directly.

Following the completion of the first mockup, other design options
were investigated (Fig. 4b and Fig. 4c). The mockup in Fig. 4b attempts
to address the concerns about sequential order by explicitly showing
that states and actions are contained in a ‘‘set’’ block where students
can manipulate the number of possible actions or states using the
‘‘+’’ and ‘‘-’’ signs on the block; however, this design raised concerns
about being overly complex for upper elementary students. The mockup
in Fig. 4c explores a different approach to resolving the sequential
ordering concern by allowing students to modify and test their AI plan-
ning task formulation using checkboxes; however, this design raised
concerns about its scalability to larger AI planning tasks with a variety
of actions and states. After considering all of the options, we came to
the conclusion that, while the sequential ordering issues within the
individual components could probably be resolved, the outer nested
block posed additional challenges by implying a sequential relationship
between initial states, possible actions, and goals. Unlike traditional
programming tasks upper elementary students are familiar with, the
specification of an AI planning task is less sequential in nature. The
AI planning agent considers each of the components in an AI planning
task formulation to come up with a plan (i.e., sequence of actions that
can achieve the goals). Thus, in the final version of the interface as
described above (Fig. 2), we aimed to make the interface as easy to
understand as possible for upper elementary students, while addressing
the concerns raised by our partner teachers.

4. Method

4.1. Study design

In order to test our visual interface to support upper elementary
students in expressing AI planning tasks, we conducted a study in
Spring 2021, consisting of data collected at three sites (Site A, Site B,
Site C) with forty-two upper elementary grade students (Fig. 5). The
description of each site can be found in Table 1. We collected three
types of demographic information from each site: (1) gender, (2) race,

(3) grade.

6

• Site A: (1) 3 male and 3 female students, (2) 1 student identified
as African American, 1 as Pacific Islander, and 4 as
White/Caucasian, and (3) 2 students were third graders, 1 student
was a fourth grader, and 3 were fifth graders.

• Site B: (1) 7 male and 8 female students, (2) all 15 students
identified as White/Caucasian, and (3) 10 students were third
graders, 1 student was a fourth grader, and 4 were fifth graders.

• Site C: (1) 9 male and 12 female students, (2) 7 students identified
as African American, 7 as Latinx, and 7 as White/Caucasian, and
(3) all 21 students were fifth graders.

All students were native English speakers. Students participated in a
pre-survey, and unplugged activities prior to playing the game to gather
demographic information and explain the fundamental concepts of AI
planning. Students were encouraged to ask questions during the game
if they required assistance.

As described in Section 3, we adopted a Use-Modify-Create ap-
proach to present the AI planning tasks to students in the game. The
mission scenarios we used were as follows:

• Use: A non-player character (NPC) in the game, who narrates
the missions, adds the appropriate actions and states to the
workspaces to specify the AI planning task for the students. Using
this formulated AI planning task, the robotic penguin will take a
picture of a penguin at the beach and then return to the research
station. Students are asked to review the formulated AI planning
tasks in the visual interface and deploy the robotic penguin.

• Modify : The NPC asks students to revise the formulated AI plan-
ning task using the visual interface so that the robotic penguin
will take 3 photos of penguins at the beach and then return to
the research station.

• Create: The NPC informs the student that someone accidentally
deleted all the possible actions and states from the formulated AI
planning task, so students are asked to specify a new AI planning
task to control the robotic penguin using the visual interface.

We collected video recordings of students’ computer screens and voice
recordings throughout their gameplay for the studies conducted at Site
A and Site B. Collecting the video recordings allows us to carefully
examine the students’ behavior during gameplay and is helpful in cap-
turing students’ micro-interactions with the learning environment [54].
At Site C, we collected student game interaction data from 21 students
in a classroom setting in order to conduct a quantitative analysis of the
inherent characteristics of student interaction with the proposed visual

interface captured in trace log data. The trace logging system in the
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Fig. 5. Student playing PrimaryAI in the study. The student is formulating an AI planning task using the in-game visual interface.
Table 1
PrimaryAI data collections in Spring 2021.
Site Description Screen recording Trace sata Number of students

Site A University laboratory Yes No 6
Site B After school classroom Yes No 15
Site C Co-design teacher’s classroom No Yes 21
game records all activities performed by a student during gameplay.
This includes what the student observes on their game screen (e.g., pop-
up messages, how in-game objects move based on the specified AI
planning task, and which part of the game scene they are in), as well as
student actions (e.g., type of object they are moving (i.e., blocks) from
one panel to another, any component the student clicks on in the visual
interface). All of the trace log entries are logged with corresponding
time stamps.

In addition to investigating how our visual interface supports upper
elementary students in expressing AI planning tasks in order to address
our research questions, we also wanted to better understand how
students reacted to our proposed visual interface and how effective
they thought the interface was for their learning. For this purpose, we
conducted a short interview with some of the students where they were
asked questions about the game, the visual interface, and what they
learned about AI.

4.2. Analysis methodologies

For our qualitative analysis, we analyzed the video recordings from
Site A and Site B using Ramey et al.’s qualitative video data analy-
sis methodologies, which emphasize three aspects of video analysis:
transcription tensions, defining the unit of analysis, and representing
context [55]. We defined the specific aspects of our study that we
intended to analyze using the collected data, based on our research
questions: (1) How is the proposed visual interface received by students
and what hurdles do they encounter while using it? (2) How does the
proposed visual interface, in conjunction with the Use-Modify-Create
scaffolding progression, assist students in expressing AI planning tasks?
(3) What misunderstandings do students have when formulating AI
planning tasks using the proposed visual interface? We iteratively tran-
scribed our recordings in order to capture both spoken and non-verbal
7

interactions (i.e., screen-based activity) throughout the gameplay. We
drew broad conclusions from the observations of several students in our
study.

For our quantitative analysis of students’ interaction with the pro-
posed visual interface, we analyzed the trace log data from the 21
students at Site C. Similar to the qualitative analysis with video record-
ings, we analyze these data with respect to how simple our visual
interface is to manipulate the blocks as desired (RQ1), and how our
UMC scaffolding progression was accepted by students (RQ2). Met-
rics for evaluating the effectiveness of our visual interface includes
(1) the number of completed missions, (2) game time for each mission,
and (3) the correlation between the number of blocks moved and
the number of trials for each mission, where the trials were logged
when students executed their formulated AI planning task. The micro-
interactions, such as where students placed the blocks (e.g., pixel-level
coordinates) in the workspaces, were not captured in the trace log data,
thus the misconceptions related to RQ3 were not investigated in this
quantitative analysis. Qualitative and quantitative analysis findings are
discussed in conjunction with each other in Section 5.

5. Results and discussion

We discuss the student behavior observed and reactions during
the recordings, as well as student interview responses and design
implications from the study observations.

5.1. Observation

Overall, students were very active while playing the game. The
recorded data contained many examples of students’ verbal reactions of

excitement about the game-based learning environment. Also, students
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seemed to be deeply engaged in the overarching narrative of the game.
Considering our target population is upper elementary students, seeing
the students engaged in the learning environment was a positive step in
delivering the desired learning outcomes. The following excerpts from
the recordings demonstrate some of the reactions to the visuals and
problem-solving tasks in the game-based learning environment:

• ‘‘Penguins are adorable!’’ (While seeing the penguins in the game)
• ‘‘Oh, he came through a bush!’’ (Pointing at a penguin)
• ‘‘Go RoboPenguin, go!’’ (While seeing the robotic penguin ap-

proaching a group of penguins)
• ‘‘Why Ted. . . why?’’ (Reacting in the third mission to one of the

engineers, Ted, who accidentally erased the possible actions from
the AI planning task formulation)

• ‘‘I want to see the baby penguins in the nest!’’ (While dragging action
blocks related to taking photos of the penguins)

Related to our proposed visual interface for expressing AI planning
tasks, all students effectively formulated the tasks using the proposed
visual interface, and the majority of them successfully completed the
offered missions. According to our video analysis, none of the students
appeared to have difficulty dragging and dropping blocks. We believe
this is one of the benefits of our visual interface adopting a look-and-
feel similar to block-based programming, as many students will be
familiar with it. This advantage was also demonstrated in our quan-
titative analysis. To verify this, we calculated the correlation between
the total number of blocks moved and the total number of trials for
each mission. We hypothesized that if they are positively correlated, it
indicates that manipulating the blocks in our proposed visual interface
is relatively simple (i.e., the increase in the number of blocks moved
is mostly because of the additional trials). According to Table 2, there
were moderate to strong positive relationships between the number of
blocks moved and trials for all missions. The low correlation for mission
3 in comparison to prior missions may indicate that there was more
variation among students when they were required to formulate the
entire AI planning task from scratch. The distribution of time duration
used for moving a block as shown in Fig. 6 also shows that students
for the most part moved blocks to their target within a few seconds
(𝑀 = 1.82, SD = 2.03), which could indicate that manipulating the
blocks in our visual interface was simple and straightforward, even
with considering the possibility that there can be some students that
are adept at handling the mouse or touch screen. The average number
of blocks moved per trial, on the other hand, reveals an intriguing result
(Table 3). Although students did not need to manipulate blocks during
the first mission (Use mission in our UMC progression), because the
solution was pre-populated, students moved more blocks on average in
mission 1 (Use) than in mission 2 (Modify). This may indicate that we
need to communicate more clearly that all they need to do is examine
the formulation of the planning task in order to assist them in focusing
more on comprehending the problem than on moving blocks. Another
possibility is that this was the first time the students interacted with
the interface in the game, so they may have moved more blocks as
they were exploring how the interface worked. Additionally, students
appeared to comprehend that the robotic penguin performs the actions
listed in the Possible Actions workspace. Students did not appear to
struggle with the language used in the blocks, indicating that our visual
interface is intuitive for upper elementary students; however, because
our participants were all native English speakers, additional study with
a broader population of upper elementary students is necessary to
confirm this. An intuitive visual interface for students to interact with
could reduce cognitive burden on students, allowing for a shift in focus
from learning how to use the different features in the game to applying
AI planning concepts to the game scenario.

We identified certain usability concerns with the visual interface
in our qualitative analysis, which may cause students to become dis-
engaged from the learning activities. The trash can icon is present in
8

Fig. 6. Histogram of the time spent for block moving. Each bar indicates the total
number of blocks in the dataset that were moved within each time window.

Fig. 7. Observed usability issue when deleting blocks. A block cannot be deleted when
it is highlighted in red (Left), and it can only be deleted when highlighted in yellow
(Right).

the lower-left corner (see Fig. 2) to enable for the deletion of blocks
from workspaces. This is similar to the functionality found in block-
based programming languages such as Blocky, but since we have three
workspaces for each component in the AI planning task formulation
some of the blocks on the workspaces are rather far away from the
trash can icon. This was not an issue for students who used a mouse;
however, for some students who used a trackpad or touch screen on
their computer, we observed it was difficult for them to drag the
blocks to the trash can at times. Also, in the current version of the
interface blocks have to be properly aligned over the trash can icon
to allow block deletion (i.e., when it is highlighted in yellow) (Fig. 7).
Since we expect students will need to iteratively test formulating their
AI planning tasks to develop complete solutions, by manipulating the
blocks it is critical to enhance the usability of block deletion in our
visual interface.

With regard to our Use-Modify-Create scaffolding progression ap-
proach (RQ2), we observed from qualitative and quantitative analyses
that the majority of students were able to specify the entire AI planning
task in the final mission, implying that the UMC scaffolding progression
is assisting students in grasping AI planning concepts. Fig. 8 shows the
number of completed missions for all students participating in the Site C
data collection. Here, we see that 81% of participating students (i.e., 17
out of 21) successfully completed the final mission, which demonstrates
our approach is promising; however, we should continue to work
on ensuring that the remaining students comprehend the concepts as
well. According to Table 4, the median of game time spent marginally
increased from Mission 1 (Use) to Mission 2 (Modify), but greatly
increased during Mission 3 (Create) (𝑝 = 0.07). This progression might
indicate that most students were prepared for Mission 2 following their
experience with Mission 1, but perhaps needed more practice prior to
Mission 3. This also implies the need for multiple missions for each
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Table 2
Relationships between the number of blocks moved and the number of trials for each mission.

Pearson Correlation coefficient (r)

Number of blocks moved and trials in Mission 1 (Use) 0.806 (p < 0.01)
Number of blocks moved and trials in Mission 2 (Modify) 0.790 (p < 0.01)
Number of blocks moved and trials in Mission 3 (Create) 0.437 (p < 0.1)
Table 3
Statistics for the number of blocks moved per mission trial.

Mean SD

Number of blocks moved per trial in Mission 1(Use) 3.46 2.12
Number of blocks moved per trial in Mission 2 (Modify) 1.24 1.01
Number of blocks moved per trial in Mission 3 (Create) 6.93 4.43
Table 4
Statistics of the game time spent on each mission by students at Site C (Minutes).

Min Median Max

Game time spent on Mission 1 (Use) 1.40 2.12 13.45
Game time spent on Mission 2 (Modify) 1.78 2.15 3.47
Game time spent on Mission 3 (Create) 2.16 4.07 48.23
Fig. 8. Funnel chart of the number of students at Site C who completed each mission in PrimaryAI.
step of the UMC scaffolding progression. Additionally, we noticed from
the video analysis that some students complained about the repetitive
nature of the tasks. This could be because the planning tasks were too
easy for the students or because the tasks in each mission should be
more varied. This will require additional research to determine the
optimal mix of ‘‘not too difficult’’ and ‘‘not too easy’’ task variations,
or potentially the development of many task sets that are adjustable
to specific students’ knowledge competencies as indicated by the large
difference between the shortest and longest game time spent in each
mission (i.e., the missions were easy for some students, but hard for
the other students) (Table 4).

Lastly, we observed a common misunderstanding among many stu-
dents as they formulated their AI planning tasks (RQ3). While the
task formulation does not specify sequential actions and states, it was
evident from watching the videos that many students attempted to align
the blocks sequentially, as they do in other block-based programming
environments. To avoid this misunderstanding, we purposefully ar-
ranged the pre-populated blocks in the workspaces during the Use and
Modify missions in such a way that they were not aligned; however, this
design was insufficient, as students continued to perceive the blocks as
sequential actions from top to bottom. While some actions (e.g., ‘‘Find
beach penguin’’ and ‘‘Take photo’’) are repeatedly done numerous times
in the created plan, the current architecture can nevertheless contribute
to this mistake. Additionally, we observed students attempting to or-
ganize all other possible actions on the workspace prior to the ‘‘Go to
9

station’’ action, which is always executed at the end of a successful plan
but does not have to be at the end of the AI planning task specification
(Fig. 9, Left), or attempting to connect blocks by aligning them (Fig. 9,
Right).

5.2. Interviews

After playing the game, we conducted interviews with some of the
students to get their feedback on the learning environment as well as to
understand how the visual interface was being received. The questions
along with a set of responses from the students are listed below.

What did you think of the game?
For this general question about the game, students showed how

much they liked the visuals (e.g., animations) in the game and how
they enjoyed playing it.

• ‘‘It was pretty fun, I liked it’’.
• ‘‘I liked the animations’’.
• ‘‘I thought it was great. It was really well programmed for people to
use the environment. It was pretty impressive’’.

• ‘‘It was pretty interesting and it taught me a lot about AI that how
simple it can be. I always thought AI is the super complex thing, and

it still can be, but also it can be super simple just like planners’’.
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Fig. 9. Student misconception about the sequential order of blocks in formulating an
I planning task. The student is inserting a new block before the ‘‘Go to station’’ block

hat is always executed at the end of the plan (Left). The students made all blocks
eft-aligned and attached to one another (Right).

hese responses align with what we observed while the students played
he game (Section 5.1). Considering our target student level (i.e., upper
lementary student), it is critical for a game-based learning environ-
ent to grab students’ interest from the beginning in order to be

uccessful in delivering the learning objectives. Students also men-
ioned that they were impressed by their ability to manipulate in-game
bjects, and enjoyed learning about AI through the game, which they
iewed as a complex subject.

hat did you like about the visual interface for specifying AI planning
asks?

Regarding the visual interface designed for specifying AI plan-
ing tasks, students found it useful and helpful for increasing their
ngagement with the game, and they liked its interactive design.

• ‘‘I thought [it was] more interactive because if you didn’t exactly
create [the AI planning task formulations], it would be just you
pressing play and watching everything [ ] so I thought [the visual
interface] made [the game] a little bit more fun’’.

• ‘‘I felt [the visual interface] was very customizable. There were so
many things you could do’’.

• ‘‘I loved it. I felt like [the game] was very interactive. I really liked
the coding part because [the visual interface] puts into initial states,
possible actions, and goal states, which I thought it was actually pretty
cool’’.

hese responses suggest that our visual interface was easy to uti-
ize, thus helping students understand the concept of AI planning, in
ddition to making the game more enjoyable.

ow could we make the visual interface for specifying AI planning
asks better?

Regarding future improvements to the current visual interface, it
as surprising how detailed students’ responses were. For students

o better grasp the concepts, students suggested changing some of
he wording in blocks, providing more information through additional
unctionality (i.e., hovering), and using different colors for each com-
onent of the AI planning task. Students also suggested a customizable
isual interface where one can change the size of the text in the
nterface.

• ‘‘I would make it a little more detailed, so under [the AI Planning
Panel], it tells you [more] about possible actions’’.

• ‘‘For the number of photos, you could say how many photos you want
to have taken in the end, so that kids know actually what [the block]
means. I feel like a lot of kids don’t exactly understand and [might]
interpret it in a wrong way and something could go wrong’’.
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• ‘‘I think [a] pop up [with a detailed description] when you hovering
over [the components in the interface] would be nice’’.

• ‘‘For some students with blurry vision, it might be really hard for them
[to read the text in the blocks], so maybe we could increase [the text
size] a bit’’.

• ‘‘Having a slider that can change the text size would be helpful’’.
• ‘‘Initial state color can be a different color [than] the goal states’’.

All of these are valuable suggestions that must be carefully considered
for the next version of the visual interface in order to target broader
student populations.

Students’ responses to the following two questions show that they
were well engaged in our narrative-centered game-based learning while
learning how to specify AI planning tasks using the proposed visual
interface.

What did you learn about AI?

• ‘‘I learned how simple AI is and how AI can be used to help study
endangered species’’.

• ‘‘I learned AI can be used to help people and animals’’.
What did you think about using an AI-driven robotic penguin to save
the yellow-eyed penguins?

• ‘‘It was a pretty smart idea because it combines science and ingenuity
all in one’’.

• ‘‘I thought it was really cool how someone engineered up robot
penguins to take pictures of real ones’’.

Through the experience of playing PrimaryAI, students were not only
able to learn about AI, but also learn about how AI techniques can be
applied to helping with endangered species issues.

Overall, students’ responses show that they were engaged in the
game and the ability of manipulating the robotic penguin using our
visual interface made the game more interactive. Students’ suggestions
on the visual interface point to potential improvements to make to the
visual interface. Lastly, students were interested in the game’s approach
of connecting life-science problems with AI learning and started to see
AI as a useful tool that is not as complex as one might imagine.

5.3. Design implications

We identified a set of design implications for assisting students’
learning based on our study observations. First, the representations
of the components of an AI planning task utilized in visual interfaces
are critical for student learning. Although we carefully designed the
proposed visual interface to avoid potential misunderstandings, further
refinement of our representations is required to convey the fact that
the actions laid out in the interface are not necessarily sequential
and do not need to be connected in order for the AI-driven agent
to create a plan successfully. Several options are being considered to
address this issue, including the following: (1) better arrangement of
the pre-populated blocks so they are distributed both horizontally and
vertically, in the Use and Modify missions, to show that the blocks
do not need to be sequentially or spatially aligned, and (2) prompt
feedback to students whenever they attempt to connect two blocks in
a workspace. Second, given the variety of computing platforms used
in elementary classrooms, we need to improve the design of our visual
interface to make it more compatible with a variety of input devices
(e.g., trackpads). As indicated previously, one of the primary usabil-
ity difficulties highlighted throughout the survey was the inability to
eliminate undesired blocks using the trash can symbol. To address this
issue, we could potentially try: (1) experimenting with other deletion
methods (e.g., right-click and remove), (2) adding a trash can icon
in each workspace so that it is closer to the blocks being erased, or
(3) highlighting droppable areas in addition to highlighting the blocks
in different colors to clearly communicate where the blocks could
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go.14 Lastly, based on students’ suggestions on the visual interface, we
should explore a few areas for improving the usability of the interface:
(1) supporting a tooltip-mode where students can click or hover over
components in the visual interface (e.g., blocks, icons, terms) and see
details on it, (2) introducing a revised color scheme for each of the three
components in formulating an AI planning task, and (3) introducing
accessibility functions such as resizable text or customizable color
schemes.

6. Conclusion

Accelerating advances in artificial intelligence have introduced the
need to introduce AI education to K-12 students. In this work, we
proposed a visual interface for elementary students to formulate AI
planning tasks within a game-based learning environment. Qualitative
analysis of video recordings, quantitative analysis of trace log data,
and student interviews demonstrated how our visual interface and a
Use-Modify-Create scaffolding progression assisted students in learning
about AI planning. The analyses also identified student misconceptions
while using the visual interface as well as usability issues with the
current version of the visual interface. As we continue to develop
the PrimaryAI game-based learning environment, it will be critical to
refine the visual interface and conduct additional rounds of testing
with a broader student population with varying levels of knowledge
competency regarding AI, as well as prior block-based programming ex-
perience. Adopting rigorous qualitative and quantitative data analyses
will be important as we develop and test our environment iteratively.
As AI education continues to expand into K-12 settings, it will be
important for future work to explore age-appropriate visual interfaces
across a wide range of grade levels and AI concepts, including machine
learning and computer vision. Co-designing these visual interfaces and
tools with elementary school teachers and students will help ensure
they are designed to meet the needs of K-12 classrooms. It will also
be important to investigate patterns across gender and other demo-
graphics variables as broader student populations utilize these learning
environments. Although there were differences in gender and racial dis-
tributions among the study sites, the overall population size was small
to identify different patterns among groups. Another promising area of
future work is to explore how AI-driven adaptive learning techniques
can tailor the AI problem solving tasks for individual students as well as
the feedback provided by visual interfaces supporting student learning
to assist a broader population of upper elementary students.
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