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Abstract. Goal setting and planning are integral components of self-regulated 

learning. Many students struggle to set meaningful goals and build relevant 

plans. Adaptive learning environments show significant potential for scaffold-

ing students’ goal setting and planning processes. An important requirement for 

such scaffolding is the ability to perform student plan recognition, which in-

volves recognizing students’ goals and plans based upon the observations of 

their problem-solving actions. We introduce a novel plan recognition frame-

work that leverages trace log data from student interactions within a game-

based learning environment called CRYSTAL ISLAND, in which students use a 

drag-and-drop planning support tool that enables them to externalize their sci-

ence problem-solving goals and plans prior to enacting them in the learning en-

vironment. We formalize student plan recognition in terms of two complemen-

tary tasks: (1) classifying students’ selected problem-solving goals, and (2) 

classifying the sequences of actions that students indicate will achieve their 

goals. Utilizing trace log data from 144 middle school students’ interactions 

with CRYSTAL ISLAND, we evaluate a range of machine learning models for 

student goal and plan recognition. All machine learning-based techniques out-

perform the majority baseline, with LSTMs outperforming other models for 

goal recognition and naive Bayes performing best for plan recognition. Results 

show the potential for automatically recognizing students’ problem-solving 

goals and plans in game-based learning environments, which has implications 

for providing adaptive support for student self-regulated learning. 
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1 Introduction 

Self-regulated learning (SRL) describes learning that is guided by metacognition, 

strategic action, and motivated behavior [17, 20]. A key attribute of SRL is its focus 

on goal-driven learning. Self-regulated learners formulate goals and develop plans for 

achieving them, which are monitored and adapted based upon learners’ self-evaluated 

progress [22]. Goal setting and planning is particularly important in scientific inquiry 

where learning is guided by students’ curiosity and motivation for acquiring 
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knowledge, and where students need well-defined plans to carry out productive inves-

tigations [9]. Self-regulated learners set goals and sub-goals to complete a learning 

task [23]. To achieve their goals, students build plans that outline approaches, such as 

strategies or sequences of actions they intend to enact [22].  

Learning environments that support goal setting and planning foster positive emo-

tions and can create opportunities for student success [4]. Adaptive learning environ-

ments provide a way to scaffold student goal setting and planning in a manner that is 

individualized to each student. An important component of adaptive scaffolding is 

recognizing student goals and plans while the learner solves problems within the 

learning environment [1]. The task of plan recognition is focused upon predicting an 

individual’s high-level goal, and the plan for achieving it, based on lower-level obser-

vations of the individual’s strategies and actions. Goal recognition is considered a 

special case of plan recognition where the prediction task is focused only on recogniz-

ing high-level goals [3]. While there has been considerable work on modeling student 

knowledge in adaptive learning environments, limited research has been done on 

student plan recognition. 

This paper presents a novel student plan recognition framework that uses machine 

learning to build goal and plan recognition models to predict students’ problem-

solving goals and the series of actions students intend to achieve them. The frame-

work is evaluated with CRYSTAL ISLAND, a game-based learning environment for 

middle school microbiology, in which students utilize a novel planning support tool 

that encourages them to externalize their goal setting and planning processes during 

science problem solving. We utilize trace log data from students’ interactions with the 

planning support tool, as well as their other problem-solving actions in the game, to 

train multi-label classification models to predict students’ goals and plans. Specifical-

ly, we predict labels derived from student goals and a cluster-based representation of 

planned actions for the goal recognition and plan recognition tasks, respectively. We 

present results from a comparison of six machine learning-based classification tech-

niques (support vector machines, random forest, naive Bayes, logistic regression, 

multilayer perceptron, long short-term memory networks) for modeling student goals 

and plans in CRYSTAL ISLAND. Our findings indicate that long short-term memory 

(LSTM) networks show promise in both goal and plan recognition tasks, which have 

potential to inform real-time scaffolding to support student goal setting and planning. 

2 Related Work 

Goals and plans are critical in SRL. Winne and Hadwin’s Information Processing 

Theory of SRL posits that, throughout goal setting, planning, and enactment, students 

are continually monitoring and controlling how their learning is unfolding so that they 

are in control of their learning processes, and they are monitoring how effective these 

processes are in contributing to learning, information processing, and task completion 

[21, 22]. This implies that students know to set subgoals, use the appropriate and ef-

fective cognitive and metacognitive SRL strategies, and adapt the use of these strate-

gies. However, how middle school students set goals and plans during science prob-
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lem solving is not well understood, leaving key questions regarding how to effectively 

support student goal setting and planning in science learning environments [20].  

Despite the importance of student goal setting and planning in SRL, there has been 

relatively little work on devising computational models of student plan recognition in 

adaptive learning environments. An important exception is work on Andes, an intelli-

gent tutoring system for physics, which utilized Bayesian networks to model student 

plans and make predictions about student actions during problem solving [6]. This 

work exemplifies a successful application of plan recognition that informs adaptive 

support to provide students with specialized help through hints.   

Prior work has also investigated a restricted form of student plan recognition, i.e., 

student goal recognition, using trace log data from student interactions with a game-

based learning environment. A set of eleven goals were inferred from player activity. 

Authors explored a variety of event representations, models, and different evaluation 

metrics for accuracy and efficiency [10, 13, 15]. The most recent work found using 

one-hot encoding vectors to represent in-game events as input for LSTMs achieved 

the best performance predicting these game activity-derived goals [14]. Additionally, 

prior work has highlighted similarities between natural language processing and plan 

recognition, demonstrating the effectiveness of applying various natural language 

processing techniques (NLP) to plan recognition tasks [2, 7].  

In this work, we extend these findings by devising a novel student plan recognition 

framework that uses students’ in-game actions and planning support tool usage as 

observed input and leverages neural embedding-based representations of student ac-

tion sequences from students’ externalized plans to produce target labels. This 

framework utilizes two multi-label classifiers to compare six machine learning-based 

classification techniques for modeling student goals and plans in CRYSTAL ISLAND. 

Our aim is to demonstrate that a machine learning-based framework for student plan 

recognition can accurately model student goals and plans during science problem 

solving in a game-based learning environment. 

3 Goal Setting and Planning in CRYSTAL ISLAND 

3.1 Planning Support Tool in CRYSTAL ISLAND 

To investigate predictive models of student goal setting and planning during science 

problem-solving, we utilize a game-based learning environment for middle school 

microbiology. CRYSTAL ISLAND features an interactive science mystery that engages 

students in a process of scientific inquiry as they investigate the source of a mysteri-

ous disease outbreak on a remote island research station. Students assume the role of 

an infectious disease investigator who is tasked with diagnosing the outbreak and 

recommending a treatment and prevention plan.  

In order to support student goal setting and planning in CRYSTAL ISLAND, we have 

developed a planning support tool that incorporates design concepts from visual pro-

gramming languages [19] and AI planning [8]. Specifically, students utilize a block-

based visual interface to assemble hierarchical (i.e., two-layer) plans consisting of 

high-level goals and low-level sequences of actions that can be enacted in CRYSTAL 
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ISLAND (Fig. 1). Students choose from a palette of pre-defined goal and action blocks 

in the tool. The goal blocks represent possible subgoals that students may wish to 

achieve on their way to solving the mystery, which are the overarching goal of the 

problem-solving scenario. Example goals include “Learn about outbreak” and “Re-

port evidence-based diagnosis”. Each action block lists specific steps that students can 

take to achieve a goal. Example actions include “Read about how diseases spread” 

and “Use scanner to test objects”. Goal and action blocks are connected to form plans. 

For example, if a student sets a goal to “Explore Island”, they can place movement 

actions such as “Go to Infirmary” under the goal block to indicate a necessary step 

needed to complete the specified goal.  

 

 

Fig. 1. Planning support tool in the CRYSTAL ISLAND learning environment. 

Prior to engaging with CRYSTAL ISLAND, students watch a short, narrated video 

that introduces the planning support tool and demonstrates how to use the tool to 

build a plan. Once students begin using the game, they are prompted early on to set 

their own goal(s) and build plans using the tool. Students use the tool by dragging and 

dropping goal and action blocks onto a virtual canvas that serves as the planning area. 

After they have formulated a plan, they can close the tool and choose to enact their 

plan (or not) within the CRYSTAL ISLAND virtual environment. If students complete a 

goal or want to remove a goal that they previously chose, they can drag the block to a 

trash icon in the planning support tool. Upon deleting a goal block, students are 

prompted to indicate whether they reached the discarded goal or not. Students are 

presented with mandatory prompts to use the tool at major milestones in the science 

mystery, as well as every thirty minutes during gameplay, and may also voluntarily 

access the planning support tool at any time. 
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3.2 Goal Setting and Planning Dataset 

A study was conducted with 144 middle school students in the United States. Of these 

students, 60% were female and the average age was 13.2 years. Students played 

CRYSTAL ISLAND remotely during asynchronous science class time due to a transition 

to remote learning during the COVID-19 pandemic. Students were instructed to ac-

cess the game over a two-day span and were not given a time limit to complete the 

game. Students also completed pre- and post-tests to assess science content 

knowledge, along with a brief demographic survey. The pre- and post-tests consisted 

of 17 multiple choice questions about microbiology that could be answered based on 

the curricular content in CRYSTAL ISLAND. Interaction logs of students’ actions within 

the game and usage of the planning support tool were logged automatically. Students 

on average played the game for 94.7 minutes (SD = 47.7). 

4 Student Plan Recognition in Game-Based Learning  

We present a student plan recognition framework that utilizes trace log data from 

students’ planning support tool usage and gameplay to induce multi-label classifica-

tion models to predict student goals and plans during science problem solving in the 

CRYSTAL ISLAND game-based learning environment. The input to the student plan 

recognition models is a feature vector representation of student actions distilled from 

students’ trace log data from the game. Students’ goals and plans from the planning 

support tool are used to devise labels for training the plan recognition models using a 

supervised learning approach. Specifically, each student action is annotated with a 

goal label and plan label that signify the goal students are attempting next and the set 

of actions they plan to take to achieve that goal, respectively. Below we describe the 

event sequence representation, labeling approach, and evaluation methods utilized in 

the student plan recognition framework. 

 

4.1 Event Sequence Representation 

Student interactions with CRYSTAL ISLAND generate trace log data that consists of 

timestamped sequences of actions taken by students while playing the game. We refer 

to these as event sequences. Based on prior work, each student action in an event 

sequence is represented by three types of features: action types, action arguments, and 

locations [14]. 

• Action type. Action type refers to categories of in-game activities undertaken by 

the student within the learning environment. These actions ranged from viewing 

posters and reading articles about viruses and bacteria to scanning items and talk-

ing to characters.  For example, “Movement” signifies moving to a particular loca-

tion or “Conversation” means a student had a conversation with a non-playable 

character in the game. There were 9 total action types. 

• Action argument. Action arguments provide more details about the action type. 

For example, if the action type is “BooksAndArticles”, the title of the book or arti-
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cle the student read is included as the action argument. There were 108 unique ac-

tion arguments. 

• Location. Location represents the region of the virtual island where the action took 

place. If the action type is “Movement”, the location is the place where the student 

moved to. There were 24 unique locations in the game. 

To prepare the dataset for student plan recognition, event sequences were segmented 

according to student usage of the planning support tool. The intuition for this ap-

proach is that students externalize their goals and plans using the planning support 

tool. Afterward, they enact their plans by performing actions in the game. An event 

sequence concludes when the student next reopens the planning support tool and 

changes their goals or plans, thereby initiating a new event sequence. In other words, 

an event sequence begins with the first student action after the planning support tool 

is closed. The event sequence concludes with the last student action before next open-

ing the planning support tool.  In total, there were 400 event sequences across all stu-

dents. The length of event sequences ranged from 1 to 454, with a median of 30. The 

event sequences were constructed cumulatively to allow for action-level prediction, 

with the maximum length of a sequence being 30. For example, events one through 

30 between planning support tool uses would translate to 30 rows of data, the first 

row only containing the first event, the second containing the first and second event, 

and so on up to 30. Because LSTMs require fixed-length input sizes, sequences of 

less than length 30 were zero-padded. Once the event sequences were created, we 

used one-hot encoding to convert student actions into a vector representation. One-hot 

encoding vectors have been shown to work effectively in prior work on student goal 

recognition in game-based learning environments [14]. 

Each plan that students constructed in the planning support tool consisted of a goal 

and a set of actions. We utilized student goals from the planning support tool to de-

vise labels for the goal recognition task, and we used sets of actions from the planning 

support tool to devise labels for the plan recognition task. Event sequences were as-

signed labels based upon students’ plans from their prior use of the planning sup-port 

tool. To illustrate, consider the following example. A student opens the planning sup-

port tool and creates a plan consisting of a goal and a set of actions (i.e., Plan 1). The 

event sequence that follows this planning support tool interaction is assigned a goal 

and plan label based upon the goals and set of actions that are included in Plan 1. 

 

4.2 Goal Recognition Labels 

The planning support tool allows students to select from 20 possible goals and was 

designed so that each goal falls into one of 5 categories: (1) Collect Data, (2) Com-

municate Findings, (3) Form Diagnosis, (4) Learn Science Content, and (5) Gather 

Information. For our analysis, these five categories serve as goal labels, rather than 

using all 20 lower-level goals. Since students can create multiple plans at a time, we 

formalized goal recognition as a multi-label classification task, assigning each event 

sequence a binary label vector in which each element of the vector corresponds to a 

possible goal category. The dataset had the following distribution of goal categories: 
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(1) Collect Data: 22%, (2) Communicate Findings: 4%, (3) Form Diagnosis: 13%, (4) 

Learn Science Content: 22%, and (5) Gather Information: 40%. 

 

4.3 Plan Recognition Labels 

The planning support tool allows students to select from 55 possible actions to build 

plans for achieving their intended goals. Similar to goals, the palette of actions in the 

planning support tool was divided across six action categories. We utilized these 

higher-level categories to represent the actions in students’ plans. Students’ plans 

typically contained more than one action associated with a goal, with an average of 

2.58 (SD = 1.96) actions per goal. To convert the action sets into labels for student 

plan recognition, the following procedure was applied. First, all actions in a plan were 

concatenated using the same order that students specified in the planning support tool.  

Next, SpaCy word embeddings were applied to each categorical action set [18]. The 

resulting embeddings were averaged for each set of actions in a plan. Next, k-means 

clustering was applied to the word embeddings to separate the plans into clusters. The 

number of clusters was determined visually using the Elbow method, resulting in 4 

distinct groups of action sets [5]. The resulting clusters were used to derive 4 possible 

class labels for plan recognition. 

When reviewing patterns of action categories within the clustering, it seemed that 

the most used action category in each plan aligned within the clusters. Cluster 0 (9%) 

represents plans that mostly contain “Read Science Content”. Cluster 1 (30%) repre-

sents primarily “Explore” action category usage. Cluster 2 (33%) represents plans that 

contain mostly “Gather and Scan Items”, and Cluster 3 (28%) represents plans that 

contain mostly “Speak with Characters”.  

 

 

Fig. 2. Procedure for translating student plans into multi-label vectors for student goal recogni-

tion (top) and student plan recognition (bottom). 

These labels were assigned to event sequences in a multi-label fashion, similar to 

the goal recognition task. Figure 2 illustrates the process for translating students’ 

plans into label vectors for goal recognition and plan recognition, respectively. 

 

4.4 Model Selection and Evaluation 

We examined six different supervised learning techniques to induce multi-label clas-

sifiers for student goal recognition and plan recognition: support vector machines 

(SVM), random forest (RF), naive Bayes (NB), logistic regression (LR), multi-layer 
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perceptron (MLP), and long short-term memory (LSTM) networks. These models 

were selected to establish a general baseline of results. Since this task has not been 

completed previously, we chose mostly non-sequential models to analyze patterns of 

overall performance. We performed nested 5-fold cross validation using an iterative 

grid search for hyperparameter tuning of all six models. Due to the limited representa-

tion of some of the labels, we could not choose a k any greater than 5 without having 

one of the classes no longer represented in the training or test set. We used a stratified 

student-level split within the nested cross validation to maintain a similar class distri-

bution across the training and test sets and to prevent data leakage between folds. For 

the non-LSTM models, we took the sum of the one-hot encoding vector across events 

to handle different lengths of sequences and created a single vector representing the 

number of times each type of action occurs in a sequence. The LSTM received the 

entire one-hot encoding vector as input. 

We utilized the macro-average F-measure to evaluate the models. F-measure has 

been shown to be a good indicator of model performance in multi-label classification 

tasks because it highlights incorrectly classified labels by basing the calculations on 

false positives and false negatives [11, 12]. Since false positives and false negatives 

are instances that can create user frustration, they are important indicators of perfor-

mance in an adaptive learning environment. In addition, we have an uneven distribu-

tion of classes for both the goal and plan recognition tasks. Macro-average F-measure 

works well on imbalanced datasets because it computes the average for each class 

label separately and then aggregates them together [16]. Therefore, this metric is well 

suited for evaluating models intended for use in adaptive learning environments. 

5 Results 

To investigate the effectiveness of the machine learning-based goal recognition and 

plan recognition models, we compared all models against a baseline model that al-

ways predicts the majority class. 

 

5.1 Goal Recognition Results 

Goal recognition results for all six models are shown in Table 1. All models except 

random forest improved on the baseline in four out of five goal categories. Random 

forest appeared to overfit to the majority class, and it performed similarly to the base-

line model. In some cases, an imbalance of the class labels causes classifiers to ignore 

the less-represented classes, which could cause a model to overfit to the majority 

class. Because random forest makes decisions based on information gain, it makes 

sense that it would often favor choosing the majority class. The LSTM was among the 

top two highest-performing models for four out of five classes, including one of the 

least represented goal categories (i.e., Form Diagnosis). SVM, NB, LR and MLP all 

improved on the baseline with respect to the macro-average F-measure. The LSTM 

showed the greatest improvement on the baseline with a 42% relative improvement in 

the F-measure. 
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Table 1. Average F-measure for each classification model and goal category in the student goal 

recognition task. Distributions in results represent the test set and are averaged across 5 folds of 

cross validation. 

  

Collect 

data 

Comm. 

Findings 

Form 

diagnosis 

Learn science 

content 

Gather 

info. 
Overall 

N dist.  21% 3% 3% 24% 49%   

  F F F F F Macro F 

Maj. 0.00 0.00 0.00 0.00 0.74 0.15 

SVM 0.20 0.07 0.22 0.20 0.71 0.28 

RF 0.00 0.00 0.00 0.00 0.74 0.15 

NB 0.42 0.12 0.23 0.43 0.58 0.35 

LR 0.24 0.16 0.40 0.27 0.67 0.35 

MLP 0.29 0.19 0.31 0.16 0.64 0.32 

LSTM 0.32 0.35 0.47 0.35 0.62 0.42 

 

5.2 Plan Recognition Results 

Table 2 shows the plan recognition results for all six machine learning models, as well 

as the baseline. For the plan classes 0, 1 and 2, all machine learning-based models 

improved on the baseline. Naive Bayes showed the highest macro-average F-measure 

for plan classes 0 and 1. This could be due to the model attributing most input actions 

to all four plan classes, causing the results to be improved. The multi-layer perceptron 

outperformed the baseline model on the majority plan class, which indicates it more 

precisely predicted the majority plan class than any other approach. The LSTM per-

formed best again for the least represented plan class. All models improved on the 

macro-average F-measure compared to the majority baseline. 

Table 2. Average F-measure for each classification model and plan class in the student plan 

recognition task. Distributions in results represent the test set and are averaged across 5 folds of 

cross validation. 

Plan class 0 1 2 3 Overall 

N dist.  8% 27% 28% 36%   

  F F F F Macro F 

Maj. 0.00 0.00 0.00 0.55 0.14 

SVM 0.36 0.35 0.20 0.29 0.30 

RF 0.31 0.41 0.00 0.18 0.22 

NB 0.53 0.54 0.17 0.48 0.43 

LR 0.46 0.50 0.21 0.43 0.40 

MLP 0.29 0.19 0.31 0.64 0.32 

LSTM 0.48 0.47 0.31 0.38 0.40 
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6 Discussion 

Overall, the machine learning-based models show clear improvement with respect to 

macro-averaged F-measure over a naive baseline on the student goal and plan recog-

nition tasks. Prior work on student goal recognition found LSTMs to be the best per-

forming model on a multiclass goal recognition task [14]. Our work extends these 

findings by showing that LSTMs also perform effectively for goal recognition in a 

multi-label context. Student plan recognition proved to be a more difficult task than 

student goal recognition. Unlike goal recognition, there was not a single model that 

performed best across all plan classes. For example, naive Bayes showed the highest 

macro-average F-measure, but its predictions were consistently every plan class for a 

given set of input actions. This type of prediction is not ideal to inform run-time scaf-

folding because it does not provide a precise indication of what students are planning.  

The imbalanced labels in the dataset presented challenges in training and evaluat-

ing the models for student goal recognition and plan recognition. However, it is repre-

sentative of the types of plans generated by students through their use of the planning 

support tool in CRYSTAL ISLAND. Notably, we saw planning support tool usage de-

crease over time, with students trending toward using the tool frequently in the first 

half of the game, but less so as time went on. There were also different levels of gran-

ularity associated with the different goal categories and plan classes. For example, 

goals related to gathering information typically occurred early in the game, and they 

encompassed a relatively broad set of possible actions. In comparison, goals in the 

Communicate Findings category ideally occurred after a student formed a hypothe-

sized diagnosis, which typically occurs later in the game. The steps involved to com-

municate findings are directly outlined in the game, and as a result, one would expect 

plans related to this goal to occur less frequently. Encouragingly, the results show the 

promise of using machine learning-based multi-label classification techniques for 

student goal and plan recognition despite the inherent challenges of imbalanced data.  

The wide variety of student plans also presented distinctive challenges for plan 

recognition. Some students frequently used the planning support tool and updated 

plans without being prompted, while other students opened and closed the planning 

support tool only when required. This limits our framework because if students do not 

update their plans, our framework interprets all input actions as being towards the 

same goal and plan. Similarly, if students use the planning support tool sparingly, 

then the goal and action labels might not be fully representative of the event sequenc-

es enacted in between planning support tool uses Further enhancements to the frame-

work could be added by identifying when a plan has been completed through game-

play or a goal, so it is not singularly relying on students to update their goals and 

plans. Additionally, more work could be done to predict goal abandonment based on 

how long a goal or plan persists in the planning support tool interactions. Such im-

provements could alter the distribution in goal and plan labels and potentially help 

with recognition performance. Additionally, more work could be done to predict goal 

abandonment based on how long a goal or plan persists in the planning support tool 

interactions. Such improvements could alter the distribution in goal and plan labels 

and potentially help with recognition performance. 
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7 Conclusion 

Goal setting and planning are key components of self-regulated learning. Adaptive 

learning environments show significant promise for adaptively scaffolding students’ 

goal setting and planning processes, but they require computational models of student 

plan recognition to do so. This work presents a student plan recognition framework 

that leverages student goals and plans captured during interactions with a novel plan-

ning support tool in a game-based learning environment for middle school microbiol-

ogy. Students’ goals and plans were used to derive labels to formalize goal and plan 

recognition as multi-label classification tasks. Several machine learning techniques 

were evaluated to predict students’ goal and plan labels based upon observations of 

their problem-solving actions in the game. In both tasks, we saw significant im-

provement on the majority baseline with most machine learning models. LSTMs 

showed particular promise in both the goal recognition and plan recognition tasks 

with respect to their ability to perform well across all classes.  

The results indicate the potential of integrating student plan recognition models in-

to real-time adaptive learning environments. Plan recognition models could be used to 

drive adaptive scaffolding in the form of open learner models of student goal setting 

and planning processes, or they could drive adaptive hints and prompts related to 

student SRL. Additionally, future work could investigate additional nuances of stu-

dent goal setting and planning, which will contribute to more robust models because 

students can work towards multiple goals and plans at a time or abandon goals and 

plans without updating their planning support tool. Lastly, exploring additional se-

quential models and a multi-task learning approach to student goal recognition and 

plan recognition is a promising direction for future work. 
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