
 
 

Predictive Student Modeling in Educational Games  
with Multi-Task Learning 

Michael Geden,1 Andrew Emerson,1 Jonathan Rowe,1 Roger Azevedo,2 James Lester1 
1North Carolina State University, 2University of Central Florida 

{mageden,ajemerso,jprowe,lester}@ncsu.edu, roger.azevedo@ucf.edu 
 
 
 

Abstract 
Modeling student knowledge is critical in adaptive learning 
environments. Predictive student modeling enables formative 
assessment of student knowledge and skills, and it drives 
personalized support to create learning experiences that are 
both effective and engaging. Traditional approaches to 
predictive student modeling utilize features extracted from 
students’ interaction trace data to predict student test 
performance, aggregating student test performance as a single 
output label. We reformulate predictive student modeling as a 
multi-task learning problem, modeling questions from student 
test data as distinct “tasks.” We demonstrate the effectiveness 
of this approach by utilizing student data from a series of 
laboratory-based and classroom-based studies conducted with 
a game-based learning environment for microbiology 
education, CRYSTAL ISLAND. Using sequential representations 
of student gameplay, results show that multi-task stacked 
LSTMs with residual connections significantly outperform 
baseline models that do not use the multi-task formulation. 
Additionally, the accuracy of predictive student models is 
improved as the number of tasks increases. These findings 
have significant implications for the design and development 
of predictive student models in adaptive learning 
environments.  

 Introduction   

Recent years have seen growing interest in modeling 
student knowledge in adaptive learning environments 
(Piech et al., 2015; Mao, Lin, & Chi, 2018; Gardner, 
Brooks, & Baker, 2019). Predictive student modeling is the 
task of predicting students’ future performance on a 
problem or test based upon their past interactions with a 
learning environment. Predictive modeling is important for 
tailoring student experiences in a range of adaptive 
learning environments, such as intelligent tutoring systems 
(Gardner, Brooks, & Baker, 2019) and educational games 
(Shute et al. 2016; Min et al., 2019). By modeling student 
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knowledge, adaptive learning environments can 
personalize delivery of problem scenarios, hints, 
scaffolding, and feedback to create student learning 
experiences that are more effective than one-size-fits-all 
approaches (VanLehn, 2011). However, predictive student 
modeling is a challenging machine learning task because 
student data is often noisy, heterogeneous, and expensive 
to collect (Bosch et al. 2016).  
 Predictive student models typically represent student 
knowledge as an aggregate across a student’s performance 
on a set of questions. For example, a typical output label in 
predictive student modeling is the overall accuracy of 
student responses on a post-test administered after the 
student has finished interacting with an adaptive learning 
environment. This approach makes stringent assumptions 
that each post-test question has an equivalent mapping 
from features in the input space and is equally 
representative of the underlying latent construct being 
measured (e.g., science content knowledge). A natural 
extension is to relax these assumptions by employing 
multi-task learning (MTL), wherein each test question is an 
outcome variable in the same predictive model. MTL has 
been shown to yield improved model accuracy across a 
range of domains by sharing feature representations across 
different tasks, which provides a natural form of model 
regularization (Zhang & Yang 2017; Argyriou, Evgeniou, 
& Pontil 2007). MTL has particular promise for predictive 
student modeling, where there are typically multiple test 
questions designed to assess the same knowledge and 
where there is often limited data available on student 
interactions with the particular adaptive learning 
environment.  
 In this paper, we present a novel predictive student 
modeling framework using MTL. We utilize MTL to 
model student outcomes at the item level within a game-
based learning environment for middle school science 
education, CRYSTAL ISLAND. Empirical results 

 



demonstrate the efficacy of the approach with markedly 
improved results over what is typical for predictive student 
modeling. Additionally, we explore how different 
mechanisms of self-attention can influence model 
performance through selecting relevant sections of student 
gameplay interactions.  

Related Work  

Student Modeling 
A widely used approach for modeling student knowledge 
in adaptive learning technologies is Bayesian knowledge 
tracing (BKT) (Mao et al. 2018). BKT models student 
knowledge as a binary latent variable in a hidden Markov 
model. The model is updated based upon student 
interactions with an adaptive learning environment, which 
provide evidence of student knowledge and skills over 
time. Although BKT is an effective approach to student 
modeling in adaptive learning environments, it is not 
always well suited for student modeling in educational 
games, particularly in cases in which a game-based 
learning environment lacks repeated content exercises that 
provide recurring evidence of student skills.  
 An alternative to Bayesian knowledge tracing is stealth 
assessment, which utilizes methods from evidence-
centered design to devise Bayesian networks that link 
student actions with content knowledge based upon 
network structures that are manually authored by domain 
experts (Shute et al. 2016). Stealth assessment is an 
effective approach for predictive student modeling in 
educational games, but the models are labor-intensive to 
construct. A related framework is deep stealth assessment, 
which utilizes long short-term memory (LSTM) networks 
to predict student test performance following interaction 
with an educational game and has shown promising results 
at modeling student knowledge without requiring domain 
experts (Min et al. 2019).  
 Item response theory (IRT) models the probability that a 
student will correctly answer a given exercise by 
incorporating the characteristics of both the test-taker and 
the questions (Embretson & Reise 2013). IRT does not 
assume all questions are the same difficulty, and it can 
model an individual’s probability of success as a function 
of both their capability and the difficulty of the question. 
Extensions of this work include time-varying models (Lan, 
Studer, & Baraniuk 2014) and the integration of ideas from 
IRT into traditional BKT models (Khajah et al. 2014). 
More recent work has investigated recurrent neural 
networks to capture more complex representations of 
student knowledge and to estimate the probability that a 
student will answer the next question correctly (Piech et al. 
2015). Other recent applications include the use of LSTM-
based architectures with an attention mechanism to predict 
student performance for the personalization and 
sequencing of exercises (Su et al. 2018). Our work utilizes 

similar sequential architectures, but we incorporate 
methods from multi-task learning to significantly improve 
model performance. 

Multi-Task Learning 
Recent years have seen a growing interest in multi-task 
learning in applications such as computer vision (Fang, 
Zhang, Zhang, & Bai 2017; Kendall, Gal, & Cipolla 2018), 
climate modeling (Goncalves, Von Zuben, & Banerjee 
2016), healthcare (Jin, Yang, Xiao, Zhang, Wei, & Wang 
2017), and dialogue analysis (Tong, Fu, Shang, Zhao, & 
Yan 2018). Multi-task learning has been shown to improve 
model fitting by sharing information across multiple 
outcome variables, providing shared components of the 
model with additional training data and enhanced 
regularization (Zhang & Yang 2017). Multi-task learning 
dramatically reduces the number of parameters that need to 
be estimated, as well as the compute time required 
compared to running each outcome variable separately. 
This is operationalized by sharing weights across multiple 
tasks based upon the assumption that the tasks have an 
inherent relationship (Shui et al. 2019). A challenge of 
multi-task learning is the sensitivity to the choice of loss 
weights for each of the tasks. Hyperparameter tuning of the 
loss weights is effective with a small number of tasks but 
does not scale well as the number of tasks increases. An 
alternative approach is to estimate the loss weights as part 
of the model building process (Kendall et al. 2018). 
 Incorporated into adaptive learning environments in 
which data collection is often labor intensive compared to 
other machine learning applications. Therefore, 
frameworks that make efficient use of training data and 
incorporate regularization effectively can be beneficial in 
building predictive models from datasets with a limited 
sample size (Sawyer et al. 2018). Multi-task learning 
allows for the separate modeling of individual questions, 
which IRT has demonstrated can have largely different 
characteristics even if the questions are manifesting from 
the same underlying latent variable. A previous study 
found favorable results using MTL to predict student test 
scores using a standard feedforward neural network 
(Bakker and Heskes 2003), but it did not involve sequences 
of student actions as are often encountered in adaptive 
learning environments. Additionally, only one weighting 
of each tasks’ loss function was explored, even though 
different loss weightings can have a large effect on model 
accuracy (Kendall, Gal, & Cipolla 2018).  

Dataset 
We investigated the multi-task learning framework for 
predictive student modeling in an educational game for 
microbiology education, CRYSTAL ISLAND (Rowe et al. 
2011). In CRYSTAL ISLAND, students take the role of a 
medical field agent investigating an infectious outbreak on 



a remote island (Figure 1). Students talk with non-player 
characters, explore different locations, read virtual books 
and microbiology posters, test hypotheses about the 
outbreak in a virtual laboratory, and record their findings 
in a virtual diagnosis worksheet. As students navigate 
through the game, their actions and locations are stored in 
trace log files that are subsequently used for modeling. 
 In this work, we used data from two different samples of 
students across different contexts (laboratory and 
classroom) to increase the heterogeneity of the sample and 
the generalizability of the resulting model (Sawyer et al. 
2018). Students from both samples answered the same pre- 
and post-test surveys, but there were some differences in 
the experimental setup and game. Combining the data from 
the university-based laboratory study (n = 62) with the data 
from the classroom-based study (n = 119), the total sample 
size of the dataset is 181 students. 
 Prior to playing the game, students completed a pre-
game survey containing demographic questions, 
questionnaires about student interest and achievement 
goals, and a 17-item microbiology content knowledge pre-
test composed of multiple-choice questions. Each question 
had four options with one correct answer. The questions 
centered on microbiology content such as pathogens, 
viruses, carcinogens, and bacteria. Students then played 
CRYSTAL ISLAND until they either solved the in-game 
mystery or they ran out of time. After playing the game, 
students completed a post-game survey, which contained a 
separate set of 17 microbiology content knowledge 
questions. The post-test microbiology content items were 
summed to create a single post-test score. 

 

Figure 1: CRYSTAL ISLAND Game Environment. 

Feature Representation 
The input features for all models consisted of items from 
two components of the pre-game survey (33 features), an 
indicator variable representing the dataset which the 
student belonged to (3 features), and the student’s 
gameplay actions within CRYSTAL ISLAND (130 features), 
which yielded a total of 166 features. From the pre-game 
survey, we used 16-items from a survey on emotions, 
interest, and value (Likert scales) and a 17-item 
microbiology content pre-test (correct/incorrect answers). 

Similar to previous work that used gameplay log features 
in a learning environment, we used a one-hot encoding of 
student actions using several components (Min et al. 2017): 

● Action type: The system records each time the student 
moves to a new location within the virtual environment, 
engages in conversation with a non-player character 
(NPC), reads a virtual book or article, completes an in-
game milestone (e.g., identifying the outbreak’s 
transmission source), tests a hypothesis, or records 
findings in the diagnosis worksheet. The data include 8 
distinct player action types. 

● Action arguments: Action arguments are specific to the 
type of action the student is taking. For example, they 
include the name of the book the student is reading, the 
NPC with whom the student is conversing, and the object 
the student is testing in the virtual laboratory. The data 
contains 97 distinct types of player action arguments. 

● Location: Within the game world, the system logs the 
location of each action. The data tracks 24 non-
overlapping, discrete regions of the virtual game world. 

● Game time elapsed: The system logs the time of each 
student action within the game, which is transformed 
into elapsed seconds since the start of gameplay.  

Predictive Student Modeling with Multi-Task 
Stacked LSTMs 

Student assessments are composed of multiple questions 
measuring the same construct (e.g., science content 
knowledge, personality) in order to provide accurate and 
reliable results. The traditional paradigm for modeling 
student assessments is to represent the outcome as an 
aggregate of the student’s performance across all 
questions. This approach constrains the model to utilize the 
same feature encoding  𝑓𝑓(𝑥𝑥𝑖𝑖 , θ1) → ℎ𝑖𝑖 and mapping from 
the feature encoding 𝑔𝑔(ℎ𝑖𝑖 , θ2) → 𝑦𝑦𝑖𝑖  across questions.  
 In this work, student knowledge modeling is 
reconceptualized within a multi-task learning framework, 
allowing for a shared feature representation for efficient 
estimation, but providing increased flexibility of different 
question characteristics through unique mappings from the 
encoding space. The long sequences of student actions 
generated from the game-based learning environment are 
modeled using a stacked LSTM with a residual connection. 
We explore how attention can potentially help the model 
focus on relevant sections of gameplay (Luong, Pham, and 
Manning 2015). Finally, the pretest data containing student 
characteristics is concatenated with the encoded gameplay 
features, fed into a dense layer, and then output as a 
prediction via the output layer.  

Single-Task Learning 
Consider a dataset composed of a 𝑑𝑑 dimensional input 
space associated with a set of K correct/incorrect responses 
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to questions across n i.i.d. students. The performance of 
each student is represented as the sum of questions they 
answered correctly, y�. If using mean-squared error as the 
loss function for y�, this single-task representation has the 
following formulation: 
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This formulation assumes that the loss for each of the T 
tasks are weighted equally. Additionally, each task is given 
an identical, shared representation, 𝑓𝑓(𝑥𝑥, θ). 

Multi-Task Learning 
A multi-task learning framework relaxes the assumption 
that all tasks are weighted equally by having both a shared 
representation, 𝑓𝑓(𝑥𝑥, 𝜃𝜃), and a task specific representation,  
for each task 𝐾𝐾. The overall multi-task learning loss 
function is often composed as a weighted sum of the 
individual task loss functions: 

𝐿𝐿(Θ) = �𝑤𝑤𝑘𝑘

𝐾𝐾

𝑘𝑘=1

𝐿𝐿𝑘𝑘�𝑦𝑦𝑘𝑘 ,𝑔𝑔(𝑓𝑓(𝑥𝑥, θ), θ𝑘𝑘∗ )� 

The weight of each individual task, wk, must be 
determined before training the MTL model and thus is not 
learned. A challenge stemming from this fact is that the 
overall loss can be sensitive to the selection of each wk, 
which can become prohibitively expensive to tune as 𝐾𝐾 
grows large. 
Uncertainty weighted. Kendall et al. (2018) proposed an 
alternative method for selecting 𝑤𝑤𝑘𝑘 by estimating it as a 
parameter within the model. The form of the adjusted loss 
function is derived from the log-likelihood of the 
multivariate normal distribution based on an assumption of 
independence across tasks. In order to prevent the model 
from selecting wk = 0:∀k ∈ K, an additional 
regularization term is added. Equal weighting across tasks 
is a special case of this formulation when 𝑤𝑤𝑘𝑘 = 1:∀𝑘𝑘 ∈ 𝐾𝐾. 

𝐿𝐿(Θ) = �𝑤𝑤𝑘𝑘

𝐾𝐾

𝑘𝑘=1

𝐿𝐿𝑘𝑘�𝑦𝑦𝑘𝑘 ,𝑔𝑔(𝑓𝑓(𝑥𝑥, θ), θ𝑘𝑘∗ )� − log𝑤𝑤𝑘𝑘 

Self-Attention 
Given a sequential output of length 𝑇𝑇 of an 𝑚𝑚 dimensional 
recurrent unit, hi ∈ Rm×T, the most common approach to 
obtaining a static representation is to either take the 
unweighted average across the entire sequence or to select 
the last output from the recurrent unit. An alternative 
approach is to use self-attention, where a weighted average 

is taken across the sequence. There are a number of 
approaches to estimate attention weights, ai. Here we 
describe the multiplicative approach outlined in Luong, 
Pham, and Manning (2015), where W ∈ Rm×m,  b ∈ Rm, 
and 𝑣𝑣 ∈ 𝑅𝑅𝑚𝑚 are estimated parameters. 

li = v⊤tanh (Whi + b) 

ai = softmax(li) 

In addition to the traditional form of self-attention shown 
above, we also utilized a simplified form, given our smaller 
dataset, where  𝑊𝑊 ∈ 𝑅𝑅𝑚𝑚 instead of an m × m matrix. This 
greatly reduces the number of parameters at the cost of 
limiting the flexibility of the model. 

Implemented Predictive Student Model 
To investigate MTL for predictive student modeling, we 
compared three model architectures: a single-task 
representation, an unweighted multi-task representation, 
and an uncertainty weighted multi-task representation. 
Each of the architectures were fit using three attention 
configurations: no attention, a simplified form of attention, 
and traditional matrix self-attention. 
Single-task baseline. The single-task model utilized post-
test score as the outcome variable with an identity 
activation function (Figure 2). 

 
Figure 2: Single-Task Model Architecture. 

Unweighted multi-task learning. The unweighted multi-
task learning (MTL) model predicted the student’s 
accuracy on each of the post-test questions, for a total of 17 
tasks (Figure 3). Each question was modeled as a binary 
classification problem (i.e., correct/incorrect) with a 
sigmoid activation function. Binary cross-entropy was 
used as the loss function for each task. The relative 
weighting for each task’s loss was selected prior to model 
training as a hyperparameter. Each task was weighted 
equally for the overall model’s loss function.  

 

Figure 3: Multi-Task Model Architecture. 

Uncertainty weighted multi-task learning. The 
uncertainty weighted MTL model predicted the student’s 
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accuracy on each post-test question using a similar setup to 
the unweighted multi-task learning model (Figure 3). 
However, each task’s relative loss weights were not 
preselected and were instead estimated as part of the model 
using the method outlined in Kendall et al. (2018).  

Experiments  

The single-task baseline models were formulated as a 
regression problem and trained to predict student post-test 
score. In contrast, the MTL models were trained as a joint 
binary classification problem across each of the 17 post-
test items. The MTL predictions for each of the 17 items 
were summed to create a single post-test score in order to 
make comparisons with single-task baseline models. For 
the baseline models, we developed a set of predictive 
models utilizing a static representation calculated as the 
sum of each feature in the gameplay data in addition to a 
single-task neural network with an otherwise equivalent 
architecture to the MTL models. All models were trained 
and evaluated using 10-fold cross-validation along the 
same set of students to remove noise from sampling 
differences. In conducting the cross-validation, we ensured 
that no student data occurred both in the training and test 
sets. Hyperparameter tuning was conducted for each of the 
models within the 10-fold cross validation. Continuous 
data were standardized within each of the folds.  

Static Models 
A set of baseline models were selected using a static 
representation to assess if the added complexity of deep 
learning methods was beneficial over non-neural machine 
learning methods. The static baseline regression models for 
the single-task problem were the following: mean value, 
Lasso, Linear Kernel Support Vector Regression (SVR), 
Random Forest (RF), Gradient Boosting (GB), and multi-
layer perceptron (MLP). In addition, we used a multi-task 
majority classifier baseline for each of the post-test items. 
Prior work on predictive student modeling in educational 
games has often utilized feature representations that consist 
of summary statistics describing students’ gameplay 
behaviors (e.g., the number of books read, the number of 
laboratory tests run, etc.), which do not capture sequential 
patterns in student behavior over time (Sawyer et al. 2018). 
Student gameplay data was aggregated by summing the 
one-hot encoded variables of each student action across 
their total gameplay and dividing by their overall gameplay 
duration, resulting in their relative action rate.  

Sequential Models 
All sequential models were composed of two stacked long 
short-term memory (LSTM) layers with residual 
connections, a layer concatenating the LSTM gameplay 
features and pretest features, and a single densely 
connected layer (see Figures 2 and 3). The activation 

function for the dense layer, single-task output, and multi-
task output were the hyperbolic tangent function, the 
identity function, and the sigmoid function, respectively. 
All models used early stopping using mean squared error 
with a patience of 15 and 500 maximum epochs. Every 
model was hyperparameter tuned using a grid search: 
number of LSTM units (32, 64, 128), number of dense units 
(32, 64, 128), and dropout rate (.33, .66). The best model 
was selected using the validation data and reported using 
the 10-fold test data.  

Results 

The lasso and random forest models tied for the best 
performance among the static baseline models (Table 1). 
The single-task models outperformed the static models by 
a moderate margin. The no attention unweighted MTL 
model and the full self-attention weighted MTL model tied 
for the best performance among the sequential models, 
with a large improvement over the single-task sequential 
baseline. Neither simple nor full attention had a notable 
effect on model performance with the exception of the 
weighted MTL model, where it provided a small 
improvement to model fit. All models terminated by early 
stopping prior to the maximum number of epochs.  
 The relationship between the number of tasks and the 
performance of the sequential models was assessed by 
evaluating each tuned model on 15 random samples across 
an increasing number of outcome variables. The average 
performance is displayed in Figure 4. The MTL models 
consistently outperformed the single-task representation, 
with the performance of both increasing with the number 
of tasks. The unweighted MTL models performed as well 
as or better than the uncertainty weighted MTL models. 
This result was contrary to expectations and led to an 
additional analysis exploring the properties of the 
uncertainty estimated loss weights. 

Uncertainty Weighted Loss Weights Simulation 
An additional investigation was conducted on the 
flexibility of the estimated loss weights using Kendall et 
al.’s (2018) uncertainty estimation. To better understand 
the similarity between the weighted and unweighted MTL 
model results, we examined the range of optimal loss 
weights for an individual task with varying levels of 
accuracy. We optimized the loss weight with respect to the 
uncertainty estimated binary cross-entropy for a single 
classification subcomponent of the overall multi-task 
framework (Figure 5). Results showed that the uncertainty 
estimation method provides limited flexibility for 
reweighting across the most common ranges of accuracy. 
The accuracy of the weighted MTL models ranged between 
55-76% for each classification task, with loss weights 
between .77-1.07. This result is expected, as within this 
accuracy range there is a limited range of loss weights. 



Table 1: Performance Comparison of Post-Test Sum across Static Baseline Models 

Metric Mean GB Lasso Lin. SVR RF MLP Majority 
Class MTL 

MSE 13.91 9.77 8.69 12.14 8.76 12.49 18.22 

MAE 3.19 2.54 2.29 2.81 2.41 2.85 3.49 

R2 -0.00 0.30 0.37 0.13 0.37 0.10 -.29 

 
Table 2: Performance Comparison of Post-Test Sum across Neural Sequential Models 

Metric Single-task Model Unweighted MTL Weighted MTL 

Attention None Simple Full None Simple Full None Simple Full 

MSE 8.36 8.19 8.08 6.93 7.05 6.99 7.40 7.29 6.92 

MAE 2.25 2.23 2.22 2.06 2.09 2.08 2.19 2.14 2.07 

R2 .41 .42 .42 .51 .50 .50 .47 .48 .51 

 

 
Figure 4: Sequential Model Performance by Number of Tasks. 

 

 
Figure 5: Optimal Uncertainty Estimated Loss Weight for a 

Single-Task. 

Discussion 
Evaluation results demonstrated that the multi-task 
learning (MTL) formulation of predictive student modeling 
yielded a 24% improvement in R2 over the single-task 
neural network model using a sequential representation and 
a 38% improvement over models employing a static 
representation. Results showed that models leveraging the 
sequential nature of student interaction data outperformed 
those that used a static representation only.  

 Within the MTL framework, we observed an increase in 
model performance as the number of tasks increased across 
all models, with MTL models consistently outperforming 
the single-task model. Previous work on predictive student 
modeling in adaptive learning environments has typically 
reported R2 ranges from 0.09 to 0.41, depending on the 
dataset and the chosen models (Moo, Lin, & Chi 2018; 
Bakker & Heskes 2003; Zhang et al. 2017). These results 
are in line with the model accuracies observed for the static 
baseline models utilized in this work. By leveraging a 
multi-task stacked LSTM framework, we observe sizable 
improvements in predictive accuracy. 



 In addition to the MTL framework, we used a self-
attention mechanism to further act as a weighting scheme 
for modeling student’s sequential gameplay data. We did 
not see substantial improvements from this self-attention 
mechanism. A potential explanation for this could be that 
each of the 17 tasks in the predictive modeling problem are 
influenced by different parts of the input sequence. 
Students are likely to gain knowledge throughout their 
interaction with the CRYSTAL ISLAND game-based learning 
environment. Therefore, predictions about the collection of 
tasks, each corresponding to a single item from the content 
knowledge post-test, may rely fully on the entire gameplay 
sequence. We constructed the attention mechanism as part 
of the shared weight portion of the model architecture, and 
it was an alternative to using attention for each unique task. 
This was due to insufficient data and the computational 
expense that task-specific attention would require. Because 
of this, attention may be forcing equal weighting across the 
game sequence because the tasks as a whole demand it.  
 It is notable that we did not see a benefit of using 
uncertainty weighting estimation over unweighted MTL 
models.  Simulations on the uncertainty weighted loss 
weights shed light on this finding by demonstrating that the 
range of optimal loss weights is constrained when each of 
the tasks has a similar base rate, which is true in our dataset. 
These results suggest that when tasks in a multi-task 
framework possess similar base rates, the simpler method 
of equal weighting of tasks is as effective as more complex 
uncertainty-weighted methods. 
 Overall, results show that multi-task stacked LSTMs are 
an effective framework for predictive student modeling in 
educational games, and therefore, they show significant 
promise for enabling run-time support functionalities to 
enhance student learning in adaptive learning 
environments. Specifically, they enable personalized 
support, such as feedback and hints, that proactively 
intervene when a learner is trending toward a negative 
outcome. This support can also be targeted toward specific 
concepts and skills addressed by individual test items 
captured in the multi-task model. MTL is broadly 
applicable to predictive student modeling tasks, so long as 
they feature assessments with multiple questions, as is 
common in educational settings. Furthermore, MTL is 
likely to be most effective as the communality of test items 
decreases. Finally, predictive student models can also serve 
as a type of formative assessment, providing an “early 
warning system” for teachers that enables re-allocation of 
attention toward those students who need the most help. 

Conclusion and Future Work 
Predictive student modeling is critical for driving 
personalized feedback and support in adaptive learning 
environments. However, devising accurate models of 
student knowledge is challenging because student data for 
a particular learning environment may be sparse, and it is 

often inherently noisy. In this paper, we have introduced a 
multi-task stacked LSTM-based predictive student 
modeling framework for modeling student knowledge in 
educational games. Multi-task learning creates shared and 
task-specific representations of student learning data that 
improve model regularization and allow for increased 
flexibility in modeling different tasks.  
 In future work, it will be important to explore how 
different loss functions can be used to combine the loss 
across multiple correlated binary variables without 
requiring the assumption of independence across each task. 
It will also be important to investigate the performance of 
multi-task stacked LSTMs for predictive student modeling 
in different genres of learning environments to study their 
generalizability. Additionally, further research is needed 
on developing interpretable predictions for multi-task 
predictive student models to allow teachers to incorporate 
model feedback into classroom settings. Finally, it will be 
important to investigate the incorporation of the multi-task 
stacked LSTM-based predictive modeling framework in 
adaptive learning environments to explore how they can 
most effectively drive adaptive support to create the most 
effective learning experiences for students.  
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