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Introduction 

Adaptive instructional systems such as the Generalized Intelligent Framework for Training (GIFT) can 
tailor training to meet the learning needs of individuals and teams. A significant cost driver in the design 
and development of adaptive instructional systems is the manual creation of training scenarios. Delivering 
personalized instruction to students requires the creation of a broad range of instructional materials. Without 
effective automation, the tailoring that adaptive instructional systems implement is limited by the small 
number of instructional variants that a human author can define, as well as a one-size-fits-all approach to 
training. Further, additional scenarios are useful for enhancing replay through drill-and-practice of specific 
skills. Generating training scenarios for adaptive instructional systems includes two key components: 
(1) creating novel scenario content, and (2) devising models that dynamically tailor scenario content to 
learners. 

This chapter discusses two parallel efforts to enhance GIFT through the design, development, and 
investigation of automated scenario generation. First, we describe a scenario variation tool that creates 
many variants of training scenarios to offer the instructor (or GIFT) increased choices between different 
combinations of instructional support or challenge. Second, we describe a data-driven framework for 
dynamic scenario adaptation that models how simulation-based training scenarios can be tailored at run-
time to foster optimal learning outcomes. These are two possible approaches to addressing the authoring 
bottleneck inherent in adaptive instructional systems. 

In the first approach, the scenario variation tool makes use of a novelty search algorithm (Lehman & 
Stanley, 2008, 2011). Genetic algorithms such as novelty search rely on a population of prospective 
solutions which are modified with ‘mutation’ or ‘crossover’ operations to create new prospective solutions 
in a repeating cycle. Prospective solutions with maximum fitness survive and reproduce in the population 
from one cycle to another. Novelty search replaces the typical genetic algorithm fitness evaluation with a 
novelty evaluation (Gomes, Urbano, & Christensen, 2012). In this replacement, genetic variants do not 
compete to become better, but to become different. Novelty search has already been used with success to 
evolve content similar to training scenarios, such as game levels (Liapis, Yannakakis, & Togelius, 2015). 
In the present research, training scenario variants attempt to become different as measured by the support 
or challenge they offer learners. As a result, novelty search is well suited to expand the space of possible 
training scenarios that GIFT can choose from when it tailors training (Folsom-Kovarik & Brawner, 2018). 
The scenario variations that result from novelty search provide varying levels of support or difficulty, such 
as offering a series of increasingly more complex scenarios, varying scenario events while ensuring that 
complexity is comparable, and offering scenarios that combine more complexity in one learning objective 
but less complexity in another learning objective that requires support. 

The second approach being investigated, the dynamic scenario adaptation framework, DEEPGEN, utilizes 
reinforcement learning (RL) to induce models for run-time tailoring of training scenarios to achieve 
instructor-specified learning objectives (Rowe, Smith, Pokorny, Mott, & Lester, 2018). RL refers to a 



family of machine learning techniques for solving tasks involving sequential decision-making under 
uncertainty (Sutton & Barto, 2018). Over the past several years, a range of RL techniques have been 
investigated for run-time personalization of virtual learning environments for K-12 and undergraduate 
education, including modular RL (Rowe & Lester, 2015), multi-objective RL (Sawyer, Rowe, & Lester, 
2017), constraint-based RL (Shen, Mostafavi, Barnes, & Chi, 2018), inverse RL (Rafferty, Jansen, & 
Griffiths, 2016), and deep RL (Wang, Rowe, Min, Mott, & Lester, 2018). Building upon this foundation, 
DEEPGEN utilizes RL to induce models for enacting run-time adaptations to military training scenarios, 
aiming to produce training experiences that optimize learning outcomes or provide effective assessments 
of target skills.  Rather than novelty being the primary selection mechanism of scenario selection, as above, 
the RL-based dynamic scenario adaption uses a population of simulated students.  

This chapter is organized as follows. In the next section, we describe work investigating novelty search and 
RL, respectively, to automatically generate training scenarios in two military training domains. We then 
describe efforts to engage subject-matter experts to obtain feedback on how to deliver automated scenario 
generation capabilities to instructors and scenario developers. Next, we discuss initial findings from the two 
projects, and conclude by offering recommendations for GIFT and directions of future work. 

Scenario Generation Methods 

Two complementary demonstrations of the two approaches in two domains of militarily-relevant instruction 
were carried out to investigate automated generation of training scenarios. First, novelty search was 
demonstrated in a small unmanned air system (SUAS) training scenario. Second, reinforcement learning-
based scenario adaptation was demonstrated in the domain of artillery call for fire (CFF) training. 

Novelty Search to Automate SUAS Training 

The first demonstration focused on generating many variants of training scenarios in advance of training. 
Infantry employment of small unmanned air systems can be trained with a scenario structured by 
information delivery and choice points. Trainees work through the process to plan, prepare, and execute a 
UAS mission by making decisions based on information such as mission briefings, UAS observations, and 
popup events. Optimal and acceptable decisions continue the scenario to the next choice point, while one 
or more unacceptable decisions can cause remediation and restart. In this setting, novelty search can offer 
GIFT valuable opportunities to change scenarios after a restart or to challenge different aspects during 
training based on learner choices or GIFT’s internal learner model.  

Technical demonstrations of novelty search showed 
the technique can generate hundreds or thousands of 
scenario variants, and the variants are measurably 
different or similar enabling fine-grained matching to 
instructional needs (Figure 1). GIFT could match 
generated scenarios to learners’ needs via 48 
measures, scaled continuously between support and 
challenge, representing the 48 learning objectives 
(LOs) covered in the original training system. The 
variations did not control LOs directly, but controlled 
the number, size, and location of units and areas 
anywhere on a scenario map. A single variation in one 
such element might alter the scenario’s support for 
many LOs. For example, moving an enemy armor 
unit might challenge a recon LO if the unit moved 

Figure 1: Novelty search creates training variants 
with many combinations of support and challenge. 



into a wooded area and simultaneously support a dynamic response LO if the tank moved further away 
from friendly forces. As a result of these interactions, novelty search tended to find scenario variations that 
supported some LOs and challenged other LOs in combinations that had not previously existed. 

The authors explored several methods to present the wealth of variations to nontechnical end users, such as 
instructors who wish to review the available variants or select one training variant which will best support 
specific trainees. An initial evaluation by a subject matter expert (SME) resulted in defining a presentation 
of training variants that military instructors are likely to find valuable. The initial evaluation resulted in user 
interface recommendations to translate technical variation into a human-usable presentation, and will 
support an upcoming evaluation by operational users. 

Reinforcement Learning-Based Scenario Adaptation in Call for Fire Training 

The second demonstration focused on devising RL-based policies for adapting events in example CFF 
training scenarios. In a CFF mission, an infantry soldier requests indirect fire on a target from supporting 
artillery (e.g., mortar, field artillery, unmanned aircraft). The soldier, or forward observer, follows a concise 
communication protocol to identify himself, describe the mission type, describe the target and location, 
describe the method of engagement, adjust fire as necessary, and conclude with a battle damage assessment. 
There are a broad range of scenario adaptations that can be enacted to augment the difficulty of a CFF 
training scenario, such as introduction of obstacles, adjustments to mission type, modifications to enemy 
behaviors, modifications to weather and time of day, adjustments to type of target and location, and changes 
to artillery battery response.  

Dynamic scenario adaptation involves enacting a series of decisions about how to orchestrate training 
events at run-time. In DEEPGEN, the full range of possible adaptations is defined in a Scenario Adaptation 
Library, which determines what types of scenario events can be adapted, how they can be adapted, and 
when they can be adapted. In RL terminology, these correspond to the actions in a Markov decision process, 
which are enacted at run-time to produce a training experience that meets instructor-specified objectives. 

The state representation includes both the state of the 
learner and the history of scenario events to date. 
Reward is defined in terms of the unfolding 
scenario’s alignment with target instructional 
objectives. RL provides a systematic process for 
exploring alternate approaches to dynamic scenario 
adaptation, gradually improving over time as more 
trainees interact with the scenario generator. 

To investigate RL-based scenario generation in the 
domain of CFF training, we utilized example 
scenarios from Virtual Battlespace 3 (VBS3). 
Developed by Bohemia Interactive Simulations, 
VBS3 is a 3D simulation platform that is widely used 
by the U.S. Army for a range of training purposes, 
including IED training, surveillance systems, land 
navigation, route clearance, convoy training, and 

many other tasks. In this work, we utilize the VBS2Fires plug-in, a third-party tool created by SimCentric 
Technologies that provides a GUI interface and ballistics simulation engine for training CFF in VBS3 
(Figure 2). Automatic scenario generation, which is performed by modifying example VBS3 scenarios 
provided as input to DEEPGEN, is realized in VBS3 by implementing an automated, or semi-automated, 
compilation process that produces executable VBS mission files. 

Figure 2. Virtual Battlespace 3 simulation platform. 



As a preliminary investigation of RL-based scenario generation, we implemented a prototype scenario 
generator that utilizes a multi-armed bandit formalism for inducing policies to generate initial conditions 
of CFF training scenarios (Rowe et al., 2018). Multi-armed bandits are closely related to RL, but they do 
not account for the stochastic effects of actions on the state of the task environment, making them a natural 
starting point for technical demonstration purposes. We utilized a multi-armed bandit approach to induce 
policies for selecting the weather, time of day, and target movement characteristics in an example CFF 
training scenario. We considered three possible values of weather (clear, cloudy, rain), 3 possible values 
for time of day (day, dusk, night), and two possible values of target movement (stationary, moving). To 
train the multi-armed bandit policies, synthetic data generated from a simple probabilistic simulated learner 
model was utilized. We ran 50,000 trials of an 18-armed bandit using the UCB1 algorithm to manage 
exploitation/exploration of different scenario adaptations. Results showed that the scenario generator 
converged on a stable ranking of alternative training scenarios over time, recommending “easier” scenarios 
for low competency simulated learners and “harder” scenarios for high competency simulated learners. 
Although the analysis did not involve modeling sequential decisions about scenario adaptations, it did 
demonstrate the potential for solving automated scenario generation tasks using RL techniques (Rowe et 
al., 2018).  

Initial Findings 

Presentation of Many Variants for Instructor Usability 

The first demonstration resulted in several evolutions of presentation for training content like varying 
scenarios. The underlying novelty search algorithm can vary training in up to eight dimensions per learning 
objective (not just one, support versus challenge), as described in Dunne, Sivo, and Jones (2015). The 
dimensions are hypothesized to be domain-independent, so an early idea was to present the dimensions of 
variation to end users, explaining exactly how each variant differed from the others. Methods that were 
attempted included arraying many dimensions into visual rows, and selecting two or three dimensions for 
display in (x,y) space similar to Figure 1. Dimensions could be selected by their range or variability or 
combined for display via projection. These early attempts were visually complex and offered details that 
instructors probably do not need to consider. 

A second prototype was created (Figure 3Error! Reference source not found.). The key features of this 
prototype include summarizing all dimensions of variation into just three bins per learning objective (easy, 
medium, and hard), as well as placing a “top five” scenario list front and center, rather than showing every 
available variant. The list priority was defined by data captured during usage, and was again designed to be 
domain-general. Usage data included number of times a variant had been used, average duration, and 
average pass rate. The parameters were intended to work for multiple instructional domains and forms of 
instructional delivery, and overall to capture institutional knowledge of which variants were more useful. 
Each variant also received a random, two-word mnemonic to let instructors remember and search for 
familiar variations. 

One result from engaging with a SME is feedback that will lead to a third iteration of usable interface. 
Military instruction in many domains is described by a three-dimensional matrix. The three dimensions are 
similarly defined in different domains (Sanders & Dargue, 2012): training complexity, mission, and mission 
conditions for a command staff trainer; weapons platform, target array, and environment for a gunnery 
trainer; or task complexity, threat level, and environmental factors for an SUAS trainer. The fine-grained 
dimensions of variation were initially defined to enhance the classic three dimensions, but an important 
lesson is that the instructors and instructional designers are typically accustomed to working within the 



three similar dimensions. Therefore, a third prototype should translate the many underlying variations back 
into just three dimensions, to provide visual shorthand and explanation of how each scenario varies. 

 

 

Figure 3: Filtering and ranking variants based on usage parameters and challenge for learning objectives. 

Developing Instructor Tools for Dynamic Training Scenario Adaption 

Building upon our proof-of-concept demonstration of a multi-armed bandit approach to automated scenario 
generation, the second demonstration proceeded by investigating two complementary directions: 
(1) expanding the Scenario Adaptation Library to broaden the space of generatable scenarios while 
preserving military relevance for real-world CFF training use cases, and (2) designing and developing a 
prototype DEEPGEN instructor tool for integrating dynamic scenario adaptation capabilities within adaptive 
instructional systems, such as GIFT. To ensure project alignment with the requirements of U.S. Army 
training for CFF, we engaged in iterative cycles of feedback with an Army SME bringing extensive 
experience in CFF training and adaptive training systems. 

First, the Scenario Adaptation Library was expanded to incorporate 13 additional adaptable event sequences 
beyond the 3 utilized in the multi-armed bandit demonstration. This yielded 16 possible dimensions for 
dynamic scenario adaptation, each with 2-5 possible levels, corresponding to more than 1,000,000 possible 
variations that could be generated from a single example training scenario. Several adaptable event 
sequences could be generalized across multiple example scenarios, such as target type (e.g., wheeled 
vehicle, tank, bunker) and target behavior (e.g., stationary, on patrol), whereas other adaptable event 
sequences were tied to particular example scenarios, such as the counter-attack behavior of a specific enemy 
unit. After developing the expanded Scenario Adaptation Library, we obtained SME feedback on how well 
the expanded set of adaptable event sequences covered the range of useful CFF training scenarios across 
difficulty levels and instructional objectives. Further, the SME provided input on scenario elements that 
lacked realism or required refinement for relevance to Army training purposes. For example, SME input 
addressed issues such as how terrain and target location can impact scenario difficulty, and common target 
types of call-for-fire missions. 



Next, we began to devise user interface mockups for a DEEPGEN instructor tool to configure automated 
scenario generation functionalities in adaptive training systems. The tool was designed for use by military 
instructors and training content developers, and it was envisioned to support eventual integration with 
GIFT. Three complementary modes of automated scenario generation were targeted as use cases: (1) offline 
scenario generation, (2) online scenario generation, and (3) run-time scenario generation. In offline scenario 
generation, an instructor and/or developer utilizes a tool to produce scenarios prior to a training exercise. 
This has labor-saving benefits, and it also expands the range of possible scenarios that can be created for 
training. However, offline scenario generation does not support scenario personalization, as it lacks access 
to an explicit learner model that captures a trainee’s state (e.g., knowledge, skills, abilities) or trait 
information (e.g., prior knowledge, goal orientation). In contrast, online scenario generation produces 
tailored scenarios just-in-time during training by consulting a learner model that reflects the trainee’s prior 
performance and competency levels. Online scenario generation is analogous to the outer loop of an 
intelligent tutoring system, where pedagogical decisions about problem selection are based upon a student 
model that is maintained by the system (VanLehn, 2006). The third mode of automated scenario generation, 
run-time scenario generation, takes this process one step further, enacting scenario adaptation while the 
trainee is completing a training exercise. This is analogous to the inner loop of an intelligent tutoring 
system, where pedagogical support is delivered to guide the learner through the completion of a problem-
solving scenario (VanLehn, 2006). In run-time scenario generation, scenarios events are dynamically 
tailored based upon the learner’s performance within the scenario thus far. We distinguish between these 
three modes because they have distinct implications for the design of instructor-facing tools to support 
automated scenario-generation use cases, as well as the underlying algorithmic techniques used to 
implement them. 

The purpose of the DEEPGEN instructor tool is to provide instructors and developers with the ability to 
specify what types of training scenarios they seek to be generated, as well as preview generated scenarios 
prior to execution in VBS3. The workflow for using the tool is as follows. The first step is to select a training 
domain.1 Next, the user (optionally) uploads example VBS3 training missions, expanding the set of base 
scenarios for RL-based scenario adaptation. Several example VBS3 missions are provided by default. The 
user can also upload configuration files that specify the current Scenario Adaptation Library and 
Performance Assessment Logic for the training domain, which are prerequisites for effective RL-based 
scenario generation. 

After completing these configuration steps, the user selects criteria to guide automated scenario generation 
through a menu-based interface (Figure 4). Initially, two types of scenario generation criteria are offered: 
Target Skills and Scenario Difficulty. A range of target skills for CFF training are enumerated, including 
different methods for specifying the coordinates of a target, performing effective adjustments to fire, and 
providing an accurate battle damage assessment. Difficulty levels include easy, medium, and hard, and 
these designations are determined based upon input from SMEs. The user can also toggle into advanced 
mode, which provides more granular control over scenario generation. In advanced mode, the user can 
provide input on the types of artillery utilized, method of engagement, types of terrain, visibility conditions, 
and provision of hints and feedback in the CFF training scenario.  

In offline scenario generation, the user next presses a “generate” button, having provided a set of input 
criteria, to obtain a ranked list of automatically generated CFF training scenarios. For each scenario, a card-
like view presents summary information about the mission, including usage data, target skills, key scenario 
properties, and a score metric derived from the expected reward associated with that scenario in 
reinforcement learning. The scenarios are ranked according to the score metric, which captures the observed 

 
1 Currently, the only supported domain for automated scenario generation is CFF training. However, the overall 
approach to scenario generation that is embodied by DEEPGEN is anticipated to generalize to additional training 
domains. 



effectiveness of the scenario in 
meeting the user-specified criteria. 
These scores are updated over time as 
learners interact with DEEPGEN, 
refining the system’s model of 
scenario effectiveness based upon the 
results of reinforcement learning. 
When a user clicks on a scenario card, 
he/she can view a more detailed 
summary of the mission, which is 
presented in a standard warning order 
format, providing information about 
the situation, mission, execution, task 
organization, and commanders intent. 
Generated scenarios can be saved to a 
library of VBS3 missions for 
subsequent execution during training.  

The workflow described above is 
contrasted with anticipated workflows 
for online scenario generation and run-time scenario generation, respectively. In these latter modes, a 
“generate” button is unnecessary, because scenarios are generated dynamically during training by tailoring 
within-scenario events to the individual characteristics of learners. Online scenario generation can be 
conceptualized as a pedagogical event within a broader instructional sequence, which could also include 
embedded assessments, direct instruction, and practice with manually-crafted scenarios, for example. Based 
upon this observation, we have begun to create UI mockups of the DEEPGEN instructor tool that envision 
automated scenario generation as a course object within the GIFT Course Creator. Devising instructor-
facing tools for automated scenario generation that are compatible with existing lesson builders, such as the 
GIFT Course Creator, will be critical for bringing online scenario-generation use cases into reality. 

It should be added that in online and run-time scenario generation, instructors will almost certainly seek the 
ability to preview how scenario generation systems will operate for different types of learners. Factors such 
as transparency and explainability are critical to establishing the trust necessary for human instructors to 
adopt AI-based technologies, such as automated scenario generation, in their training workflows (Sinha & 
Swearingen, 2002). Devising methods and tools for visualizing how dynamic scenario adaptation features 
operate within DEEPGEN is the subject of continued work. 

To guide the iterative design and development of the DEEPGEN instructor tool, we have engaged SMEs in 
several rounds of feedback on its user interface design. SME feedback has been instrumental in refining the 
terminology and criteria featured within the instructor tool, including the CFF skills that are targeted, the 
types of artillery that are supported, and types of terrain that can be utilized. Specifically, SME feedback 
led to the addition of configuration options for the method of engagement in CFF (e.g., type of adjustment, 
trajectory, ammunition, danger close), advised adding terrain options that contain tree cover to enhance 
scenario difficulty, and suggested refining criteria for time pressure to distinguish between diegetic time 
pressure (e.g., enemy forces launching an attack) and non-diegetic time pressure (e.g., a time limit).  

Discussion 

The first demonstration highlights a need in the current state of practice to usefully present many training 
variations—filtering, finding, and describing the variants presented in a way that aligns with what 

Figure 4. Mockup of DEEPGEN instructor tool showing default 
configuration options for automated CFF scenario generation. 



instructors want to know. Good alignment will allow instructors to start using a sophisticated training 
system, understand its recommendations, and accept or change them to optimize learning. Poor alignment 
will increase the barrier to entry for new users and reduce the job effectiveness of any instructors who do 
not give up on using the training entirely. Because a sufficiently sophisticated computational system may 
consider hundreds or thousands of factors in recommending an adaptive choice of scenarios or 
interventions, there is a challenge to identify how these factors, across training domains, should be 
presented to align with end user needs. 

The findings indicate that instructors share a common vocabulary and mental model which are found to 
appear in multiple sources and training domains. The constructs of task complexity, level of risk or urgency, 
and environmental conditions should form a template by which more fine-grained variation is understood. 
Once these three dimensions are accepted as a basis for describing training variants, the dimensions can be 
applied to different training domains and can be refined by additional measures. If a computational system 
requires or offers many more dimensions of variation, they may be initially hidden within a summary or 
rollup metric and available for drill-down when advanced users request more information. 

Institutional knowledge, or information about training that is accumulated over time and through repeated 
use, is likely to provide a secondary or optional entry into the training choices available. In the military use 
case, achieving the mandated training is paramount and therefore the primary data presentation should 
support easily identifying mandatory training within a sequence. The three-dimensional model is likely to 
help filter and find training content for this use case, with qualities such as duration and pass rate available 
as secondary filters after these. 

The findings of the second demonstration illustrate how the intrinsic combinatorics of dynamic scenario 
adaptation yield a vast range of generatable scenarios for even simple domains, such as CFF training. By 
integrating additional example scenarios, or devising broader missions that embed CFF within them, the 
yields of automated scenario generation can be increased further. This observation underscores the 
importance of devising methods to provide instructors and developers with control over the operation of 
automated scenario generators. In the DEEPGEN instructor tool, we provide users with general criteria, such 
as target skills and scenario difficulty, as well as granular criteria, such as domain-specific methods of 
engagement and adversary behaviors, to guide scenario generation of CFF training missions. Similar to the 
first demonstration, we find that it is critical to work closely with SMEs to guide the formulation and 
presentation of control methods to ensure that instructor-facing tools are understandable, usable, and useful. 
Further, the second demonstration highlights the promise of devising empirically based evaluations of 
scenario quality that can be leveraged to rank and assess candidate training missions. In RL-based scenario 
generation, this evaluation mechanism is implemented algorithmically in the form of a reward model that 
is induced from data on learner interactions with candidate scenarios as well as their performance and 
training outcomes.  

This work also highlights the different ways that automated scenario generation can be integrated into real-
world training workflows. Automated scenario generation can be utilized as a labor-saving tool, reducing 
the costs of developing training scenarios through offline scenario generation processes. Additionally, 
automated scenario generation can be utilized online, and at run-time, to enhance adaptive training 
capabilities through dynamic personalization of scenarios in line with the individual characteristics of 
learners. These complementary modes have significant implications for the design of instructor tools for 
controlling the operation of scenario generators. In offline scenario generation, an instructor is likely to 
peruse candidate scenarios, save them to a library of training materials, and deploy them to learners. In 
online scenario generation, as well as run-time scenario generation, an instructor is likely to seek 
understanding of how dynamic scenario adaptation will shape learner experiences during a training exercise 
based upon learners’ individual states and traits. Automated scenario generation creates the need for 



supporting transparency and explainability within instructor tools, which will be critical to establishing the 
trust necessary for instructors to adopt automated scenario generation technologies in the classroom.  

Recommendations and Future Research 

Research on automated scenario generation is still in its nascent stages, and there are several promising 
directions for future research. For the two projects described in this chapter, continued engagement with 
SMEs, including instructors and training content developers, will be essential for refining the scenario 
generation tools to support real-world training use cases. In addition, it will be important to investigate how 
these tools, and their underlying novelty search and RL-based approaches to scenario generation, 
respectively, generalize to additional training domains. Third, conducting evaluation studies to investigate 
the prospective labor-saving benefits of automated scenario generation, as well as the training effectiveness 
of created scenarios, will be critical to develop an evidence base for the benefits of automated scenario 
generation in adaptive training systems for military domains.  

More broadly, there are myriad open questions about automatic scenario generation that require further 
attention. First, it will be important to investigate the relative strengths and weaknesses of alternative 
computational frameworks that have emerged in recent years, such as generative adversarial networks, for 
solving automated scenario generation tasks. This calls for methodological progress in the evaluation of 
automated scenario generation systems, including identification of appropriate instruments, metrics, and 
research designs that reveal the effectiveness of alternative scenario generation approaches. Second, 
investigating mixed-initiative systems that enable human instructors and content developers to co-create 
training scenarios in coordination with automated scenario generation systems has significant potential. 
Finally, devising examples of how to integrate automated scenario generation functionalities with existing 
tools for constructing adaptive training systems, such as the GIFT Course Creator, will be critical for taking 
scenario generation out of the laboratory and into real-world classrooms. 

Conclusions and Recommendations for GIFT 

The two studies presented in this chapter illustrate recent advances in automated training scenario 
generation that hold significant promise for real-world training applications. Automated scenario variation 
before training, and dynamic scenario adaptation during training, are well positioned to help reduce the 
human effort and cost associated with generating tailored, effective instruction and assessment. Addressing 
practical considerations in effective deployment and use of such research will help to enrich the training 
capabilities of adaptive instructional systems such as GIFT, as well enable the creation of adaptive training 
systems that continually improve in effectiveness and utility over time.  The inputs needed for each of these 
systems are the instructional objectives, example scenarios that target them, and some amount of student 
data about experiences with the scenarios. These items are required to generate the scenarios and need to 
be represented through metadata tags, descriptors, folder structures, or equivalent.  For output, the system 
must either have a link to (1) an instructor interface to select student scenarios, (2) a system interface to 
automatically assign the scenarios, or (3) both. Adaptive instructional systems must have a way of 
describing existing content to algorithmic content generators, as well as links to where this content can be 
placed after its creation. 
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