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ABSTRACT
Collaborative game-based learning environments have signi�cant
potential for creating e�ective and engaging group learning experi-
ences. These environments o�er rich interactions between small
groups of students by embedding collaborative problem solving
within immersive virtual worlds. Students often share informa-
tion, ask questions, negotiate, and construct explanations between
themselves towards solving a common goal. However, students
sometimes disengage from the learning activities, and due to the
nature of collaboration, their disengagement can propagate and
negatively impact others within the group. From a teacher’s perspec-
tive, it can be challenging to identify disengaged students within
di�erent groups in a classroom as they need to spend a signi�-
cant amount of time orchestrating the classroom. Prior work has
explored automated frameworks for identifying behavioral disen-
gagement. However, most prior work relies on a single modality for
identifying disengagement. In this work, we investigate the e�ects
of using multiple modalities to detect disengagement behaviors of
students in a collaborative game-based learning environment. For
that, we utilized facial video recordings and group chat messages of
26 middle school students while they were interacting with C����
��� I�����: E��J�������, a game-based learning environment for
ecosystem science. Our study shows that the predictive accuracy of
a unimodal model heavily relies on the modality of the ground truth,
whereas multimodal models surpass the unimodal models, trading
resources for accuracy. Our �ndings can bene�t future researchers
in designing behavioral engagement detection frameworks for as-
sisting teachers in using collaborative game-based learning within
their classrooms.
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1 INTRODUCTION
Recent years have seen signi�cant growth in game-based learning
environments for K-12 education [38]. These types of environments
embed curricular content in gameplay to enhance students’ learning
experience. Studies show that game-based learning environments
can increase motivation and engagement and promote positive
cognitive and a�ective outcomes in students [13, 14]. A promising
addition to the �eld is collaborative game-based learning environ-
ments where the gameplay elements are speci�cally designed to
incorporate collaborative problem solving by introducing group
goals, integrating group chat, and promoting group progressions
[15, 16, 27]. When engaging in collaborative game-based learning,
students interact with each other in groups to make progress, help
others, negotiate, provide feedback, share knowledge, discuss strate-
gies, and overcome obstacles as a group. By providing the bene�ts of
collaborative learning, these environments can potentially increase
engagement in learning. However, students sometimes disengage
from productive behaviors, which may negatively a�ect the group
and undermine the bene�ts of collaborative learning [18].

In game-based learning environments, disengagement might
occur from time to time during the learning process. The de�ni-
tion of disengagement varies wildly in the literature [1]. In our
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case, we refer to disengagement as behaviors that disrupt or im-
pede learning �ow [28], observed through in-game chat or facial
expressions. Such behaviors have been discovered to be associated
with boredom, frustration, or mind-wandering and can negatively
a�ect learning outcomes [10, 35]. The impact is even higher in a
collaborative learning space as students’ behavioral disengagement
can distract other students within the group leading to ine�ective
discussion [6], starting disruptive talk [25], or demotivating others
in the classroom, impeding the learning process and engendering
negative attitudes within the group and in the classroom [23]. In
a classroom environment, teachers are often busy orchestrating
the learning session, and as such, it is often di�cult to identify
individual students that are disengaged from the learning activity
[26]. In the context of a collaborative game-based learning envi-
ronment, detecting disengagement behaviors is even more di�cult,
as the disengagement can happen within and outside the game,
and what constitutes disengagement behavior is often dependent
on the context and modality of the learning environment [22, 29].
For example, in a game about aquatic ecosystems, chatting about
�sh would be relevant to the learning activities, but chatting about
airplanes would likely be o�-topic and, therefore, indicative of dis-
engagement behavior. Similarly, speaking to a student who belongs
to the same groupmay be reasonable, but speaking to a student who
belongs to a di�erent group may indicate disengagement. Limited
work has explored methods for automatically identifying disengage-
ment behaviors in collaborative game-based learning environments.
Most prior work either relies on a single modality [6, 19, 25] or uses
multimodal data streams while only looking at a single data stream
for the ground truths [10, 33, 36].

In this paper, we have used group chat logs and facial video
recordings to examine the e�cacy of various modalities in identify-
ing disengagement behaviors in collaborative game-based learning
environments acrossmultiple data streams, leveraging amultimodal
disengagement detection framework from our prior work [12]. For
our study, we captured middle school students’ chat messages and
facial recordings while they interacted with a collaborative game-
based learning environment, C������ I�����: E��J�������. We
separately labeled the chat and facial recording data to create dis-
tinct sets of ground truths for disengagement behaviors and inves-
tigated the following research questions:

• Do performance of predictive models using unimodal fea-
tures vary by the modalities of the ground truths?

• Do models using multimodal features outperform models
using unimodal features?

Results show that multimodal models incorporating both chat and
facial features can achieve higher levels of predictive accuracy when
automatically detecting disengagement behaviors among students
compared to unimodal baselines, irrespective of the data stream
used to de�ne disengagement behaviors. Results also suggest that
unimodal features are only relevant for detecting disengagement
behaviors from the same data stream, are often insu�cient for de-
tecting disengagement behaviors from another data stream, and in
some cases, multimodal features may not be necessary. Our �nd-
ings can help inform decisions of collaborative game-based learning
environments, provide insight into multimodal frameworks for de-
tecting behavioral disengagement, support teachers in classroom

orchestration, and provide opportunities to adaptively sca�old stu-
dents to improve engagement in their learning process.

2 RELATEDWORK
Game-based learning environments have been shown to have posi-
tive e�ects on learning. Greipl et al. [13] outlined the bene�ts of
game-based learning and proposed a three-dimensional framework
based on cognitive, emotional, and social factors. According to the
study, game-based learning environments are excellent at com-
plementing and enhancing traditional learning. To gain insights
into teachers’ perceptions of game-based learning in the classroom,
Huizenga et al. [14] conducted semi-structured interviews with 43
secondary education teachers and found that game-based learn-
ing environments positively impact student engagement, make the
students competitive, and thus motivate them in learning content
and knowledge, and positively in�uences their learning outcomes.
Similar positive e�ects of game-based learning have been seen
in other studies [38]. Collaborative tools are often integrated in
such game-based learning environments to enhance group collab-
oration, internal combination, and collaborative problem solving
towards solving collaborative goals. Recent meta-analyses show
that students in collaborative learning with a game-based learning
environment produce more positive e�ects, in terms of knowledge
acquisition, in terms of positive attitude and motivation, in terms of
self-satisfaction, and self-e�cacy, than individual learning [7, 15].
De Jesus and Silveira developed a framework for enhancing stu-
dents’ computational thinking skills in a collaborative game-based
environment and show that their method can stimulate student in-
teractions and problem-solving strategies [16]. Saleh et al. showed
that collaborative game-based learning could promote students’
knowledge acquisition and negotiation by leveraging common com-
munication mediums in middle school [27].

Disengagement behaviors in learning often play an important
role in learning outcomes [35]. Studies show that behaviors as-
sociated with positively valenced emotions (i.e., �ow) are often
associated with improved learning outcomes and engagement [24].
Similarly, negative behaviors associated with emotions like bore-
dom or frustration often result in disengagement or disinterest [4].
Under the lens of activity theory, Maimaiti et al. [20] examined how
student disengagement is a�ected by student-teacher interactions
in a video conferencing scenario and suggested implementing more
opportunities for student-student interactions, designing methods
to reduce daydreaming (mind-wandering), and providing more in-
centives for online interactions will help to reduce the intensity of
student disengagement. Student a�ective states can be leveraged
to understand students’ choice to disengage as well as to engage in
on-task conversation. D’Mello et al. [10] found that students’ be-
havioral posture (leaning forward or backward) is a direct predictor
of their engagement in the learning activity. Another study showed
that students’ engagement could be observed by their interaction
with the system (like keystrokes) [2]. Similarly, Baker et al. [11]
examined the a�ective states that precede, co-occur, and follow stu-
dent disengagement behavior. Findings suggest that bored students
are more likely to disengage and are subsequently not likely to be
bored in the next observation. They also found that frustrated stu-
dents tend not to become disengaged, and disengagement behaviors
are unlikely to co-occur with frustration.
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Figure 1: Students in-game activities while (left) interacting with NPCs and (right) chatting during white board interactions in
the C������ I�����: E��J������� collaborative game-based learning environment.

Recent studies have used di�erent modalities to identify stu-
dents’ learning behaviors automatically. Nikiforos et al. [23] used
students’ conversation data to explore the automatic detection of
aggressive behavior (i.e., bullying) in two K-12 computer-supported
collaborative learning environments. In their study, they found
that using students’ text responses as unigrams on shallow neu-
ral networks can outperform traditional machine learning models.
More recently, deep learning-based embeddings have been used
in students’ group chat data to detect o�-task conversation (dis-
engagement behaviors) in a collaborative learning environment
[6]. They found that Long Short-Term Memory-based models with
word embeddings learned from languagemodels like ELMo or BERT
are suitable for �nding o�-task behaviors in group chats. Another
study by Park et al. [25] used a user-aware attention mechanism in
neural networks to detect disruptive talk in multi-party dialogue of
middle school students using a game-based learning environment.
Facial video recording data has been used to understand student
behaviors, such as moments of arousal in collaborative learning
[21]. Lee et al. [19] used facial action units from videos of students
to identify students’ disengagement behaviors (mind-wandering)
in online learning. Bixler and D’Mello [5] used eye trackers for
gaze information to detect students’ disengagement behaviors in a
learning activity. Other modalities that have been studied include
audio, gesture, and motion to detect di�erent types of behavioral
disengagement among students [30].

Multimodal learning analytics can leverage features from di�er-
ent modalities to identify key aspects of learning behaviors during
game-based learning. Recent studies show that multimodal fusion
of data can improve over unimodal data and can help to better
understand the complex learning processes that students engage
in during game-based learning [22, 29]. Sharma et al. employed
hidden Markov models in game-based learning environments to
predict students’ e�ortful behavior using game logs, physiological
data, and self-assessment tests [31]. Worsley and Blikstein [37] used
multiple data streams (human-annotated video data, automated an-
notation of gesture, audio, and bio-physiological data) to show that
multimodal learning analytics for student behaviors can vary wildly
based on di�erent modalities and can have a large impact on the
outcomes. Multimodal learning analytics have also been used to
�nd productive engagement and disengagement behaviors in the

context of collaborative problem solving, showing a possible alter-
native to purely qualitative or machine learning approaches [36].
But limited work has used multimodal data in collaborative game-
based learning to understand the impact of modalities on predicting
student disengagement behaviors. In this work, we utilized multiple
data streams to observe, identify and compare student disengage-
ment behaviors and introduced a framework that leverages these
modalities to detect behavioral disengagement of middle school
students in a collaborative game-based learning environment.

3 METHODS
This section describes the game-based learning environment we
used, our study design and data collection, our annotation process
of creatingmultiple sets of ground truths capturing di�erent aspects
of disengagement behaviors, their synchronization process, and
�nally, our framework for analysis.

3.1 Collaborative Game-Based Learning
Environment

For our study, we used C������ I�����: E��J�������, a collabora-
tive game-based learning environment, designed to teach ecosystem
science to middle school students. In the game, students in groups
of three or four are placed on a remote island where �sh on the
island are getting sick. The students are tasked to investigate the
cause of such sudden sickness as a group by talking to di�erent
non-playable characters (NPCs) around the island, reading relevant
materials found around the island, observing symptoms by roaming
around, collecting samples of di�erent elements, and taking notes
of relevant facts. In the game, students can use a virtual school
research center (game location) to investigate and analyze di�er-
ent samples that they have collected and �nd relevant evidence.
Throughout the journey, the students can discuss with each other,
share information, negotiate, and help each other by using an in-
game chat tool. The chat window is always available to the students,
irrespective of their current location in the game. The students also
use a collaborative whiteboard to share and organize their notes
and evidence into di�erent categories to narrow down the cause of
the sickness (see Figure 1). The whiteboard uses a voting mechanic
where all the students within the group are required to agree on
the current organization of the evidence and notes. The game ends
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Figure 2: Collecting multiple data streams while students interact with the learning environment.

when all the students in the group agree on the cause of the sick-
ness. Typically, it takes approximately 2-3 hours to complete the
game as a group.

3.2 Study Design and Dataset
To understand students’ disengagement behaviors in collaborative
game-based learning environments, we conducted an IRB-approved
study with 28 middle school students, among which, a total of
26 students assented to participate (along with a signed consent
form from their parents) in the study and completed all the study
activities (18 males and 8 females). The students consisted of sixth
graders (11 students) and seventh graders (15 students). All students
were aged between 11 to 13 years old (M=12.08, SD=0.75).

The students interacted with the game in groups of three or four
(total 7 groups) for three hours divided into two sessions (1.5 hours
each). Each group was accompanied by a facilitator who assisted
students during their gameplay by communicating with them via
the in-game chat tool. The role of the facilitators was to ensure
that each group was making progress by providing hints, asking
re�ection questions, and providing positive feedback. The facili-
tators also intervened when conversations within the group were
unproductive. Within each group, students assumed di�erent roles
in the game for solving the ecosystem science problem. To ensure
maximum communication occurred through the in-game chat, stu-
dents within the same group were physically seated apart from each
other, but in the same classroom. Throughout the learning session,
we collected facial video recordings of each student using webcams
and in-game chat messages using game trace logs (see Figure 2). A
total of approximately 48 hours of video recordings were collected
during the study after removing segments with technical issues
(such as the learning session being interrupted due to technical
issues). On average, 111 minutes of video were recorded per stu-
dent (M=111 minutes, SD=29 minutes, Min=57 minutes, Max=140

minutes). On the other hand, a total of 3,650 chat messages were
collected after removing facilitators’ chat messages. An average
of 140 chat messages were sent by individual students (M=140.38,
SD=101.54, Min=24, Max=438), and on average, 521 chat messages
were sent by individual groups (M=521.43, SD=224.33, Min=272,
Max=905).

3.3 Annotation of Ground Truths
We formulated our multimodal disengagement detection as a super-
vised binary classi�cation task. In our study, we wanted to capture
students’ disengagement frommultiple perspectives as a single data
stream may not always re�ect the complete story [29]. For example,
looking at engagement using only chat messages shows partial
truth of the situation, or similarly, looking at engagement using
video recordings does not show if the student is truly engaged in the
game or not. To achieve a holistic understanding of disengagement
behaviors, we tagged group chat messages and segments of video
recordings separately as engaged and disengaged and merged them
together using di�erent heuristics.

All of our chat messages were divided into four categories,
namely, (1) content related, (2) task related, (3) socio-emotional re-
lated, and (4) others by two raters1. Looking into each type of chat,
we found that content-related and task-related chat messages show
high engagement in the learning process, whereas chat messages
marked as others are typically o�-topic conversations or unrelated
discussions. Therefore, we marked all messages that are content
related or task related as engaged and others as disengaged. The
socio-emotional messages were a mixed bag containing messages

1The complete set of chat messages contained a total of 8,938 messages that combined
data from another study with a similar setting. Two raters tagged the combined data
with Cohen’s Kappa (inter-rater reliability) of 0.925, indicating very strong agreement.
We are using a subset of the combined data that contains a total of 3,650 chat messages
sent by students that also included facial video recordings of the students. The same
subset was also used in [27].
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Table 1: Engaged and disengaged behaviors across two modalities and their coding scheme.

Modality Coding Scheme

Group Chat
Message

Engaged (1): messages related to content or task or socio-emotional messages that are positive and related to learning
or task. For example, “where would organic matter go?”, or “kmon guys we got this”.
Disengaged (0): messages unrelated to the learning activity or are spams or socio-emotional messages that are
negative or not related to the learning or task. For example, “you’re a wizard Harry”, or
“REEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE”.

Facial Video
Recording

Engaged (1): within a 10-second window, showing engaged behaviors (looking at the monitor, keyboard or taking
notes, leaning forward, focused on monitor, etc.) for more than 6 seconds.
Disengaged (0): within a 10-second window, showing disengaged behaviors (talking to someone, distracted, looking
around, leaning back, sleeping, eating, playing with toys, using a mobile phone, etc.) for at least 4 seconds.

that positively impact the learning (such as motivating some team-
mates) as well as messages that negatively impact the learning
(such as trying to guess the identity of each other). Prior studies
also found that positive socio-emotional interactions can lead to
positive engagement, whereas negative socio-emotional messages
tend to disrupt learning [17]. Following that, two raters (�rst and
second authors) separately labeled these socio-emotional messages
as engaged or disengaged by looking into the context of such mes-
sages and identifying messages that positively correlate with the
learning (engaged) and messages that hamper the learning process
(disengaged). With 25% overlapping data, the two raters achieved
a kappa of 0.716, showing signi�cant agreement. Finally, the �rst
author tagged the rest of the messages following the agreed-upon
coding scheme (see Table 1). In our dataset, a total of 2,584 (70.79)
chat messages were marked as engaged, and 1,066 (29.21%) chat
messages were marked as disengaged, indicating imbalanced data.

Next, we tagged individual segments of the video recordings
as engaged or disengaged. For that, we used a window size of 10
seconds following previous work [33, 34]. For our tagging process,
we investigated the video recordings and identi�ed some common
behavioral patterns in these videos, such as looking at the monitor,
leaning forward, leaning backward, looking around, eating, talking
to another student, using cell phones, etc. Next, we created a coding
scheme to mark certain behaviors as disengaged following previous
works [8, 10, 19]. Looking into the video recordings, we found that
students were periodically disengaged from the learning activity,
but they rarely disengaged for a signi�cant time in a single stretch.
The reason could be that, during our study, the classroom had multi-
ple facilitators, teachers, and researchers around, and thus students
were conscious of their surroundings and never disengaged for
lengthy periods of time. With that observation, we decided to mark
a segment disengaged if the student showed disengaged behaviors
for at least 4 seconds within a 10-second window, else we mark
the segment as engaged. Two raters (�rst and �fth author) labeled
25% of the video data using the HELP framework [3] and reached a
Cohen’s Kappa of 0.763, suggesting signi�cant agreement. The �rst
author labeled the remaining data following the coding scheme
(see Table 1). The �nal data contained a total of 12,533 segments, of
which 9,684 (77.27%) were marked as engaged, and 2,849 (22.73%)
were marked as disengaged, again indicating imbalanced data.

3.4 Synchronizing Ground Truth Signals
In both of our ground truth sets (chat-based and video-based), the
indications of being engaged or disengaged were only available
at a particular moment (for chat-based ground truth) or a particu-
lar segment (for video-based ground truth). To have a comparable
measurement of both sets of ground truths, we �rst synchronized
the two modalities by using timestamps of the video recordings
with timestamps from the in-game logs. We validated the synchro-
nization by observing the timestamps of 10 random chat message-
sending moments in the game logs with the corresponding segment
of the video. Next, we assumed that every chat message is also seg-
mented and has a “window of chat”, in other words, we assumed
that a student remains engaged (or disengaged) if the majority of
the chat messages sent by that student within a 10-second window
were engaged (or disengaged) chat messages. In short, we made a
10-second window for our unit of measurement across both sets of
ground truths. To understand how students were engaged with the
learning activity throughout the session, we decided to propagate
students’ current engagement state (engaged or disengaged) until
the next ground truth was available. For video-based ground truth,
there were only a handful of segments where these ground truths
were missing (i.e., recording error) and needed to propagate, but
for chat-based ground truth, there were many moments where no
chat was sent (no ground truth available) and needed to propagate.

An example time-series engagement �ow is shown in Figure
3. Here, we can see that chat-based engagement and video-based
engagement sometimes disagree with each other (see A-E in Figure
3). Moments like A or B are cases where the chat message shows dis-
engagement, but in the facial video recording, the student appeared
engaged. This can happen when students are chatting about other
topics but are focused (for example, one student was chatting about
COVID, which is disengaged, but his expression was very serious).
Also, note that the chat messages sent by the students prior to A
and B were mostly disengaged chat messages from other group
members (red triangle). This might indicate that group members
were already having a disengaged conversation that the student
participated in. On the other hand, cases like D can happen when a
student loses focus for a short period, but it is not apparent through
the chat messages as their next chat-based interaction is still en-
gaged. Looking at the group chat, note that there was a disengaged
chat message (red triangle) just prior to D, which might trigger the
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Figure 3: Example of a �ow of engagement for two sets of ground truths (video-based and chat-based). The blue dots show the
moment when a chat message was sent by a student. The red and green triangle shows when teammates send chat messages
that are disengaged or engaged, respectively. The cyan diamond is the moment when facilitators intervened. Mark A-E shows
di�erent disagreement points between the two sets of ground truths.

momentary disengagement of the student, and a follow-up mes-
sage from the facilitator (cyan diamond) that re-established the
engagement. For example, one student was asking about how to
vote and was momentarily distracted by another student’s frus-
trated response (“BRUH KMON!!!”), but soon regained focus due
to the facilitators’ intervention. Such momentary disengagements
are only re�ected in facial recordings but are not visible in the
chat messages and convey the core concept of data fusion for un-
derstanding student behaviors using di�erent data streams. Cases
like E show that students sometimes write sudden disengaged chat
messages, but that never gets re�ected in the video, as the students
are seen focused on the video recording. This might also be the case
when the student participated in a disengaged conversation, as just
before E, another student in the group sent a disengaged message.
Finally, cases like C show that sometimes students become engaged
(or disengaged), but the moment of disengagement can be delayed
when observing one data stream (chat message) while another data
stream can capture that in real-time (facial video). For example, in
one case, the facilitator asked the group to look into their notes,
and so one of the students started looking into her notes (engaged
seen from facial video) but replied to the chat after her observation
was �nished (engaged seen from the chat messages).

After removing segments with no students, segments when the
game was paused (due to technical issues), and other sanitation
(removing segments after the game ends), a total of 12,912 seg-
ments (10-seconds each) were created, of which 12,533 segments
had video-based ground truths without propagation (few missing
were technical errors or blocks in the video), and 2,620 segments
had chat-based ground truths without propagation. Note that all
12,912 segments had both sets of ground truths after propagat-
ing the corresponding engagement tags. Among 12,912 segments,
10,575 (81.90%) segments were engaged when considering chat-
based ground truths, and 9,926 (76.87%) segments were engaged
when considering video-based ground truths. Across both sets of
ground truth, 9,149 (70.85%) tags agree with each other. More specif-
ically, 780 segments agree on disengaged, and 8,369 segments agree
on engaged.

3.5 Behavioral Disengagement Detection
Analysis

For our analysis, we designed a behavioral disengagement detection
framework where we utilized two modalities of features, namely
(1) video-only-features, where features are from the video modality,
such as facial action units, pose and gaze estimations, etc., and
(2) chat-only-features, where features are from the chat modality,
such as word embeddings, for predicting students’ disengagement
behaviors using o�-the-shelf binary classi�ers (e.g., random forest,
decision tree, etc.). We also combined the two modalities of features
together asmultimodal-features by concatenating chat-only-features
with video-only-features for each segment. A complete �ow of our
framework is shown in Figure 4.

For chat-only-features, we �rst pre-processed students’ chat mes-
sages with NLTK2 by tokenizing and removing white space, punc-
tuations, and stop words. Next, we transformed the tokenized chat
messages into distributed vector representations using ELMo, a pre-
trained language model that produces deep contextualized word
embeddings. For each chat message, we computed a 256-dimension
embedding for each token and then averaged over all tokens to
calculate a single mean word embedding. The ELMo model was
pre-trained using 5.5B tokens fromWikipedia and 3.6B tokens from
the WMT 2008-2012 datasets. The allennlp3 Python library was
used for creating the embedding vectors. If multiple chat messages
were sent within a single segment, we averaged the embedding
vectors to represent the chat-only-feature for the segment.

For video-only-features, we used the OpenFace4 behavior analysis
toolkit that uses a convolutional neural network model to process
facial videos and outputs multiple action unit features (35), pose
features (6), gaze features (8), and facial landmark features (67). For
our analysis, we used the action unit features, pose features, and
gaze features (total 49 video-related features). For a single segment
(10 seconds), we kept the average of all 10 seconds for the 49 features
to represent the video-only-feature for that segment. Note that, like
2https://www.nltk.org
3https://allenai.org/allennlp/software/allennlp-library
4http://cmusatyalab.github.io/openface/
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Figure 4: Behavioral disengagement detection framework. Here the black-solid lines show prediction �ow. The orange-dashed
lines show how the ground truths were generated. And the green-solid line shows the concatenation of features.

ground truths, the chat-only-features and video-only-features were
both propagated when some segments were missing corresponding
features.

Besides our two sets of ground truths (video-based ground truths
and chat-based ground truths), we also create four mixed sets of
ground truths by combining these two sets using di�erent heuris-
tics: (1) the chat-�rst ground truths prioritize chat-based ground
truths in segments where a chat message was available, else re-
lies on video-based ground truths; (2) the video-�rst ground truths
prioritize video-based ground truths in segments where the facial
video was available, else relies on chat-based ground truths; (3) the
engaged-�rst ground truths marks a segment engaged whenever
there is a disagreement; (4) similarly, the disengaged-�rst ground
truths marks a segment disengaged whenever there is a disagree-
ment. All four heuristics have their own assumptions that are easy
to see. For example, for heuristic chat-�rst, our assumption is that
chat messages are better at detecting behavioral engagement, but
when not available, we can still rely on video data for detecting
engagement. Similarly, disengaged-�rst ground truth is an aggres-
sive approach in detecting engagement where we assume the worst.
The distribution of these ground truth sets can be seen in Table 2.

Next, to compare our feature groups across di�erent ground
truth sets, we have utilized four o�-the-shelf classi�ers using scikit-
learn Python library, namely, Random Forest (RF), Decision Tree
(DT), Support Vector Machine (SVM), and Logistic Regression (LR).
All classi�ers were trained for binary classi�cation to predict each
segment of 10 seconds as engaged (1) or disengaged (0). The reason
behind using these classi�ers is somewhat arbitrary and based on
popular usage, as we are not investigating classi�ers or comparing
them. Rather, our goal is to investigate the impact of unimodal
features (chat-only features and video-only features) andmultimodal
features across di�erent ground truth sets. As our dataset is im-
balanced, we only modi�ed the classi�ers to handle class weight

to balance. The rest of the parameters were in their default set-
tings. For robustness, we have repeated all experiments with three
random seeds, each with �ve-fold cross validation, and only re-
ported the mean scores. As the goal of the framework is to detect
segments of disengagement, we use precision, recall, and F1 for
disengagement as our evaluation metrics.

4 RESULTS
Results from the unimodal and multimodal features for detecting
behavioral engagement of students across each segment (10-second
window) of the learning session is shown in Table 3. The columns
of the table show two unimodal feature sets, namely, (1) chat-only
features that contain 256-dimension vectors representing a single
chat message, and (2) video-only features that contain 49-dimension
vectors representing features such as action units, gaze, and post
estimations, etc. (see Section 3.5), and one multimodal feature set,
namely, (3) multimodal-features that combine both unimodal fea-
ture sets by concatenating them. The rows of Table 3 are divided
into six groups, each containing a set of ground truths (see Ta-
ble 2). As mentioned before, the �rst two groups (chat-based and
video-based) are directly annotated from chat message stream and
video recording stream, respectively. The other four are di�erent
combinations of these two sets of ground truths (see Section 3.5).
The highest F1 scores among the three feature sets are marked in
bold for ease of understanding.

First, note that chat-based ground truths have signi�cantly
higher performance when using chat-only features. This shows that
the vector embedding from chat messages can su�ciently capture
the di�erence between an engaged and disengaged chat message.
Looking further, we can see that chat-based ground truths have sig-
ni�cantly lower performance when using video-only features. The
reason could be that chat message instances are few and far between
(see Section 3.3 and Section 3.4), and we propagated the current
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Table 2: List of di�erent ground truth sets and their distributions.

Ground Truth Set Heuristic for combining data streams Total disengaged
(0)

Total engaged
(1)

Chat-based Annotated from chat messages 2,337 (18.10%) 10,575 (81.90%)
Video-based Annotated from video recordings 2,986 (23.13%) 9,926 (76.87%)
Chat-�rst Prioritize chat-based ground truths in segments where a chat message was

available, else relies on video-based ground truth
3,148 (24.38%) 9,764 (75.62%)

Video-�rst Prioritize video-based ground truths in segments where facial video was
available, else rely on chat-based ground truth

2,915 (22.57%) 9,997 (77.42%)

Engaged-�rst Marks a segment engaged whenever there is a disagreement 780 (6.04%) 12,132 (93.96%)
Disengaged-�rst Marks a segment disengaged whenever there is a disagreement 4,543 (35.18%) 8,369 (64.82%)

Table 3: Precision, Recall, and F1 scores (in %) for models using unimodal and multimodal features across multiple ground
truth sets. Highest F1 scores are bolded and best F1 scores are given asterisk (*) for each classi�er across each ground truth sets.
(rows).

Chat-only features Video-only features Multimodal features
Ground
Truth

Classi�er Prec. Recall F1 Prec. Recall F1 Prec. Recall F1

Chat-based RF 99.37 91.23 95.16* 28.88 13.45 18.34 99.33 91.10 95.03
DT 95.64 93.14 94.36 27.89 36.20 31.50 95.14 92.44 93.76
LR 89.46 88.38 75.23 24.77 61.50 35.32 65.32 87.51 74.79
SVM 96.37 93.78 90.34 23.52 38.40 29.15 25.86 40.19 31.45

Video-based RF 51.60 65.81 57.82 67.99 59.04 63.18 84.58 54.30 66.11*
DT 46.94 72.59 57.00 52.82 62.43 57.36 60.14 59.99 60.05
LR 35.13 58.83 43.98 51.51 79.90 62.63 55.23 79.44 65.15
SVM 45.49 60.86 52.03 43.23 49.72 46.24 43.39 49.59 46.27

Chat-�rst RF 49.53 59.91 54.22 65.23 52.77 58.33 80.98 48.74 60.84
DT 44.76 67.79 53.91 48.31 55.10 51.47 55.43 56.21 55.80
LR 37.80 59.25 46.15 48.98 76.32 59.66 53.34 76.30 62.78*
SVM 46.06 60.31 52.22 42.07 46.71 44.24 42.23 46.53 44.25

Video-�rst RF 49.82 65.88 56.70 64.64 57.21 60.67 83.20 52.31 64.20*
DT 45.48 72.75 55.95 49.63 58.43 53.65 58.47 58.54 58.47
LR 34.78 58.26 43.55 49.51 78.62 50.75 53.73 78.61 63.82
SVM 44.50 61.12 51.47 40.66 47.16 43.64 40.88 47.23 43.80

Engaged-�rst RF 52.05 82.69 63.84 15.99 19.91 17.72 85.25 60.64 70.78*
DT 47.96 84.23 61.07 16.51 33.55 22.12 66.71 63.63 65.08
LR 32.38 85.51 46.94 15.15 73.42 25.12 38.21 85.86 52.86
SVM 41.72 87.69 56.51 13.41 48.46 21.00 14.54 51.03 22.62

Disengaged-
�rst

RF 75.77 75.16 75.45 70.89 57.31 63.37 89.50 73.83 80.91*

DT 73.00 72.57 72.77 54.33 59.71 56.88 72.32 77.34 74.74
LR 60.20 65.05 62.52 56.30 69.49 62.20 68.40 76.43 72.19
SVM 76.12 67.92 71.77 52.39 40.17 45.45 53.14 40.70 46.07

state of engagement as well as the chat-only features across the
learning session. Thus, although video-only features were presum-
ably changing over time, chat-only features and their corresponding
ground truths remained the same for all segments between two chat
messages. This might cause the classi�er using video-only features

to get confused. For the same reason, using multimodal features
does not help and the performance remains somewhat similar.

Next, looking at unimodal feature sets, we see that video-only
features have very low performance for chat-based ground truths,
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and similarly, chat-only features have low performance for video-
based ground truths. But video-only features perform better in video-
based ground truths, and chat-only features perform better in chat-
based ground truths. In other words, unimodal features perform
better if the ground truths are coming from the same data stream.
For mixed ground truths (chat-�rst, video-�rst, engaged-�rst, and
disengaged-�rst), both unimodal feature sets perform similarly,
apart from engaged-�rst. The reason that classi�ers using video-only
features performed poorly when predicting engaged-�rst ground
truths (17%-25% F1) could be related to the large class imbalance
seen in engaged-�rst ground truths (see Table 2). Overall, the results
show that the predictive performances of models using unimodal
features change when ground truths are di�erent (RQ1).

As we can see, apart from the chat-based ground truths, multi-
modal features are always outperforming their unimodal counter-
parts (2-13% F1 increased) for Random Forest (RF), Decision Tree
(DT), and Logistic Regression (LR). The highest improvement is seen
when using Logistic Regression in the video-�rst ground truths
(17%) when using multimodal features. Also, note that, apart from
one case (Logistic Regression for chat-�rst ground truths), Random
Forest classi�er always performs the best (64-95% F1). This shows
that, in general, Random Forest classi�ers are better at predicting
disengagement behaviors among students. In other words, models
using multimodal features are outperforming unimodal models in
most cases (RQ2).

Another key point to notice is that SVMs always perform better
with chat-only features and are never improved with video-only
features ormultimodal features. This is somewhat expected as SVMs
are traditionally good at using small text-based data mining [32]
and using multimodal features becomes a curse of dimensionality.
But notice that, in all the cases, Random Forest and Decision Trees
outperform SVMs for unimodal as well as for multimodal feature
sets.

5 DISCUSSION AND LIMITATIONS
Unimodal features can capture student behaviors and are often
su�cient for designing models that capture partial behavior. But
student behaviors can only be partially observed using a single
data stream. For example, understanding if a student is engaged in
a learning activity can be partially observed by their interaction
within the environment (chat messages data), but also can be par-
tially observed by looking at their facial expression (video recording
data). Thus, a more complete understanding can only happen when
we consider di�erent data streams together [29]. To address this,
we used combined ground truths using di�erent heuristics (chat-
�rst, video-�rst, engaged-�rst, disengaged-�rst) while designing
our predictive task. The intuitions of using such heuristics are given
in Section 3.5.

To answer RQ1, our results show that the predictive perfor-
mances of our unimodal models vary wildly across di�erent ground
truth sets. Furthermore, models using unimodal features are great
at predicting behavioral disengagement if these disengagements are
de�ned using similar data streams. For example, video-only features
are good at predicting video-based ground truths (rows 5-8 in Table
3) of disengagement behaviors (46% to 63% F1 scores, depending
on classi�ers). Whenever we are using features from a di�erent

data stream, the predictive accuracy usually decreases. For example,
when video-only features are used for predicting chat-based ground
truths (rows 1-4 of Table 3), the F1 scores fall from 40% to 77%,
depending on the classi�er. Similarly, when chat-only features are
used for predicting video-based ground truths (rows 5-8 of Table
3), the F1 scores decrease by 1% to 7%, except SVMs.

For RQ2, our results show that no matter which ground truth
sets are used (including combined ground truths), models using
multimodal features can at least perform as good as the unimodal
counterpart (for chat-based ground truths), if not better (for the rest
of the ground truth sets). A simple solution thus is to usemultimodal
features that include all the di�erent data streams together. In such a
case, no matter how the behavioral disengagements are de�ned, the
classi�ers would have su�cient knowledge to leverage the features
accordingly. Our �nding also supports previous work that shows
multimodal features can generally improve predictive accuracy of
student behaviors [9].

Multimodal data is resource intensive and often requires expen-
sive equipment [22]. Understanding the trade-o� between predic-
tive accuracy and the resource cost thus becomes a crucial consid-
eration. Our analysis shows that, in a chat-based disengagement
detection, using multimodal features (or using features from video-
only features) is unnecessary and does not improve performance.
In other words, it is better to use unimodal features from chat
messages if we are concerned about identifying disengagement
behaviors from chat messages and forgo expensive data collection
such as video-recordings. On the other hand, the same is not true of
video-based disengagement detection or a hybrid disengagement de-
tection (like chat-�rst, video-�rst, engaged-�rst, or disengaged-�rst
ground truths). In such cases, there is a signi�cant improvement in
predictive accuracy when using multimodal features.

While the results demonstrate the high performance of the mul-
timodal framework for disengagement detection in collaborative
game-based learning, the work has limitations. We de�ned dis-
engagement behaviors using 10-second segments for video-based
ground truths. Previous work also used di�erent sizes of segmented
windows to de�ne or observe student behavior [33, 34], but such
behavior, in general, is continuous. Another limitation is the use
of 10-second segments for chat-based annotations, as chat mes-
sages are event-driven and do not have a “window of engagement.”
This assumption, however, is reasonable as student engagement
behaviors are known to persist for a short period of time [34], and
it enables the possibility of combining video-based ground truths
with chat-based ground truths. This work also assumes that engage-
ment and disengagement are binary values, as is done in previous
work analyzing similar student behaviors [6, 25]. Furthermore, our
study involves multimodal data that has inherent challenges due
to privacy and ethical concerns. Leveraging such data streams for
building machine learning models that can be used in actual class-
room settings calls for additional investigation.

6 CONCLUSION AND FUTUREWORKS
A vast amount of engaging and e�ective learning opportunities
exist in collaborative game-based learning environments. These en-
vironments are designed to enhance the collaborative experiences
of a group of students by embedding collective goals in the game
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that requires communication, negotiation, knowledge sharing, and
discussion to collaboratively resolve obstacles. However, a wide
variety of negative student behaviors, such as mind-wandering,
o�-task conversation, disruptive chats, etc., can be observed dur-
ing such learning sessions, which can lead to disengagement from
the learning activity. These disengagement behaviors can be detri-
mental to individual learners as well as their groups and often
result in negative learning outcomes. It is often overwhelming for a
teacher to orchestrate a classroom while also observing individual
students’ engagement in the activity. Thus, assisting teachers by
automatically detecting engagement behaviors o�er potential for
creating e�ective learning sessions. However, it is very challenging
to automatically identify disengagement behaviors as the behaviors
are scattered across di�erent data streams. Most prior work has
used a single modality to partially identify such disengagement
behaviors (for example, chat-based analysis to identify o�-task
conversation [6]). Previous work used multimodal approaches to
identify disengagement behaviors as well [36]. Limited work has
investigated the impact of modalities on detecting disengagement
behaviors across di�erent data streams. In our work, we have used
a multimodal behavioral disengagement detection framework that
leverages in-game chat messages and facial video recordings to
detect and compare the e�ect of di�erent modalities on identifying
disengagement behaviors across multiple data streams. Our study
with middle school students interacting with a collaborative game-
based learning environment shows that the predictive accuracy of
unimodal features at predicting disengagement behaviors can vary
signi�cantly based on how the behaviors were observed. Our results
suggest that using multimodal features can ensure maximum pre-
dictive accuracy in predicting disengagement behaviors of students,
irrespective of their data streams. We also found that unimodal
features are suitable (and often su�cient, in the case of text-based
disengagement) for detecting disengagement behaviors from the
same data streams but are ine�cient for detecting disengagement
behaviors across di�erent data streams. Our �ndings show that
when designing behavioral disengagement detection models for
collaborative learning environments, it is important to consider the
relationship between the modalities involved and the data streams
used for observing disengagement to ensure maximum resource
utilization. Furthermore, our �ndings can inform the design of
better orchestration assistance to support teachers. AI-supported
dashboards can integrate our multimodal disengagement detection
framework to provide real-time information to teachers on disen-
gaged students in di�erent groups. Furthermore, our framework
can be used for providing adaptive sca�olding for collaborative
game-based learning environments and engage students in the
learning activity by providing motivational instructions or feed-
back. Our �ndings can also give insight into designing multimodal
models for predicting students’ engagement behaviors with respect
to their cost and gain trade-o�s. Given these results, a promising di-
rection for future work is investigating the integration of additional
modalities, including game interaction logs and in-game collabora-
tive processes, to further increase the accuracy of disengagement
detection to improve collaborative game-based learning. Another
direction of this work is to investigate deep learning models for
improving the disengagement detection framework’s predictive ac-
curacy by leveraging embeddings from di�erent modalities. Finally,

further investigations are required to address privacy and ethical
concerns of using multimodal models in actual classrooms.
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