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ABSTRACT
Game-based learning environments have the distinctive capacity

to promote learning experiences that are both engaging and ef-

fective. Recent advances in sensor-based technologies (e.g., facial

expression analysis and eye gaze tracking) and natural language

processing have introduced the opportunity to leverage multimodal

data streams for learning analytics. Learning analytics and student

modeling informed by multimodal data captured during students’

interactions with game-based learning environments hold signifi-

cant promise for designing effective learning environments that de-

tect unproductive student behaviors and provide adaptive support

for students during learning. Learning analytics frameworks that

can accurately predict student learning outcomes early in students’

interactions hold considerable promise for enabling environments

to dynamically adapt to individual student needs. In this paper, we

investigate a multimodal, multi-task predictive student modeling

framework for game-based learning environments. The framework

is evaluated on two datasets of game-based learning interactions

from two student populations (n=61 and n=118) who interacted

with two versions of a game-based learning environment for micro-

biology education. The framework leverages available multimodal

data channels from the datasets to simultaneously predict student

post-test performance and interest. In addition to inducing models

for each dataset individually, this work investigates the ability to

use information learned from one source dataset to improve mod-

els based on another target dataset (i.e., transfer learning using

pre-trained models). Results from a series of ablation experiments

indicate the differences in predictive capacity among a combination

of modalities including gameplay, eye gaze, facial expressions, and

reflection text for predicting the two target variables. In addition,

multi-task models were able to improve predictive performance

compared to single-task baselines for one target variable, but not

both. Lastly, transfer learning showed promise in improving pre-

dictive capacity in both datasets.
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1 INTRODUCTION
Student interest plays a critical role in learning [36]. Intelligent

game-based learning environments are a form of learning environ-

ment that are designed to promote student interest while enhancing

performance or knowledge on a particular subject through adap-

tive support in real-time [22, 50]. Automatically detecting specific

student behaviors and modeling student knowledge and skills is a

promising approach to drive adaptations in game-based learning

environments [23, 47]. However, this approach poses significant

challenges due to the complexity of student learning and interest.

Multimodal learning analytics hold considerable promise for mod-

eling complex student learning behaviors in game-based learning

by leveraging advances in sensor-based technologies (e.g., facial

expression toolkits, eye trackers) and natural language processing

[8]. Predictive student models of complex learning phenomena that

leverage multimodal learning analytics must also be able to make

accurate predictions at early stages (i.e., as students are learning) in

student gameplay for the system to appropriately make adaptations

to support the student. Few studies have investigated the degree

to which separate modalities impact the performance of predictive

student models in game-based learning, and the capacity to use

multimodal data to predict students’ post-test performance and

interest at early points during gameplay remains unexplored.

Inducing multimodal predictive student models of post-test per-

formance and interest in game-based learning poses significant

challenges and opportunities. First, the success of multimodal data

for student modeling is not universal, as prior research has indicated

that for certain learning-related constructs, additional modalities

can provide additive or even super-additive effects on the accuracy

of student models, but in other cases, more modalities can have

https://doi.org/10.1145/3576050.3576101
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inhibitory effects on model accuracy [6]. As a result, investigating

the impact of separate modalities in the prediction of each learn-

ing outcome or motivational construct is critical. Second, these

motivational constructs and learning outcomes also have complex

relationships [16], which suggests that predictive student models

may be able to leverage shared information learned by predict-

ing each outcome simultaneously and improve predictive accuracy

across multiple relevant modeling tasks. A potential solution to this

problem is multi-task learning, wherein each learning outcome or

motivational construct is a target variable in the same multimodal

predictive student model. Third, different game-based learning envi-

ronments and student populations may elicit different relationships

between multimodal data, post-test performance, and interest, ne-

cessitating a separate model for each student population and game-

based learning environment [36]. A key research question then is,

how can multimodal predictive models be adapted across different

student populations, game-based learning environments, and do-

mains to improve the model’s predictive performance? A promising

approach for leveraging information across domains is the use of

transfer learning (specifically, domain adaptation) [32]. Transfer
learning in this context would include leveraging learned represen-

tations of overlapping, but not identical, multimodal data across

populations in game-based learning environments for predictive

student modeling tasks. However, research on leveraging transfer

learning to create personalized predictive student models in game-

based learning is still in early stages [44] and requires additional

investigation.

In this paper, we introduce a unified multimodal predictive stu-

dent modeling framework using two separate datasets collected

using the Crystal Island game-based learning environment for mi-

crobiology education: Crystal Island – Sensor-Based and Crys-

tal Island – Reflection. In Crystal Island – Sensor-Based,

undergraduate students interacted with the game, and gameplay

interaction logs, student eye gaze, and student facial expressions

were collected. In Crystal Island – Reflection, a group of middle

school students interacted with a different version of the game

that did not include sensor data, where the system prompted the

students for text-based reflections of their learning at various plot

points during their interactions. For both datasets, we extracted

the temporal features associated with the gameplay and additional

available modalities and used them as input to multi-task early pre-

diction models of post-test score and interest, which are the target

variables in this work. We then investigated the use of transfer

learning as a means to improve the performance of multimodal

predictive models for each dataset by employing an unsupervised

learning technique (i.e., an autoencoder) to learn representations

of the shared modality (i.e., student gameplay) between domains.

This is the first work to combine the three components of (1) mul-

timodal learning analytics, (2) early prediction, and (3) multi-task

learning into a single, unified predictive student modeling frame-

work for game-based learning. Additionally, this paper contributes

findings on the efficacy of transfer learning between multiple stu-

dent populations and game-based learning environments, where

there is a shared modality between the datasets. The resulting

framework offers the capability of identifying students who are

disinterested or struggling with learning at early points throughout

their learning experience, which are two critical issues that can af-

fect the learning and problem-solving experience. These identified

instances can then guide a separate adaptive scaffolding system to

give personalized support to the student and to keep track of the

student’s progress.

2 RELATEDWORK
Multimodal learning analytics has been the subject of growing inter-

est in recent years for its focus on creating a data-rich understand-

ing of student learning and associated behaviors and constructs

[3, 4, 30, 31]. Multimodal data have been used to model student

engagement [18, 52] and knowledge [8, 24, 43], and have been uti-

lized to support teachers in classrooms [1, 2, 38]. Modalities such as

eye gaze [39], facial expressions [49], and student-generated text-

based responses [21] have been incorporated into student models.

In game-based learning environments, multimodal data show con-

siderable promise for modeling student post-test performance and

interest [8]. Previous studies have leveraged multimodal data in

game-based learning environments [13], but few studies have ob-

served the degree to which multimodal data can make accurate

predictions of student learning-related constructs at early points in

student gameplay (e.g., [9]).

Predictive student modeling holds significant potential for im-

proving learning experiences and supporting struggling students.

By observing students’ learning behaviors over time, models could

predict student knowledge and interest in the subject area, which

could then be used in real-time to inform adaptive support. Using

student gameplay interactions and other sources of data that pro-

vide evidence of student learning, this modeling approach aims to

predict students’ future competencies and characteristics using the

data up to a specific moment [45]. This algorithmic technique is

known as early prediction, which has seen significant success in stu-

dent modeling applications [17, 28]. Prior research has investigated

predictive student models of student knowledge in game-based

learning [10], but limited work has investigated predictive student

models of interest.

Due to the complex relationships between constructs such as

interest and learning-related outcomes, modeling these variables

by leveraging the related information could prove beneficial. Little

work has explored the use of multi-task learning to account for

multiple, related learning outcomes and constructs, especially in

the context of game-based learning. Multi-task learning has been

studied in several domains, such as computer vision [19] and natu-

ral language processing [46], but less so in student modeling. Prior

work used student behaviors in an adaptive learning environment

to simultaneously model hint-taking and knowledge [5]. Other

work incorporated multimodal data into multi-task student affect

models in game-based learning, finding that jointly predicting affec-

tive states yields improved results over single-task baselines [14].

To improve performance further, transfer learning between student

populations or learning environments can provide the student mod-

els access to rich information from other datasets, but this family of

algorithms has not been extensively studied in game-based learning.

A common problem in student modeling is the cold start problem,

where modeling new students or learning environments can be

difficult without prior information [37]. Transfer learning has been
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Figure 1: Crystal Island game-based learning environment.

adopted as one approach to mitigating this issue, including work

in programming environments [25] and game-based learning envi-

ronments [12, 44]. Building on this and other work in the context

of game-based learning, we present a unified framework for multi-

modal learning analytics, predictive student modeling, multi-task

learning, and transfer learning.

3 METHOD
To induce predictive student models of interest and post-test per-

formance, we utilized two datasets stemming from the same game-

based learning environment, Crystal Island. In the first, Crystal

Island – Sensor-Based, we equipped the game-based learning

environment with a suite of multimodal sensors to collect student

gameplay, facial expression, and eye gaze data. In the second, Crys-

tal Island – Reflection, we equipped the game-based learning

environment with a reflection tool that allowed students to reflect

on their progress in the game. The written (i.e., textual) reflections

were collected in conjunction with student gameplay as the stu-

dents interacted with Crystal Island. The specific datasets, study

participants, and procedures, are described below.

3.1 Crystal Island Game-Based Learning
Environment

Crystal Island is a game-based learning environment for microbi-

ology education (Figure 1) [48]. This paper includes data collected

from two versions of the game with two different student popu-

lations. In the game, students play the role of a medical detective

whose goal is to uncover a mysterious disease outbreak on a re-

mote island. Students collect information by reading virtual books,

talking to non-player characters, and testing hypotheses using the

in-game laboratory equipment. All student actions, movement, di-

alogue, and interactions with in-game objects are recorded and

logged for further analysis. Once the student has gathered evidence,

they are able to submit a diagnosis and treatment plan to the island’s

camp nurse.

3.2 Multimodal Data Collections
3.2.1 Crystal Island – Sensor-Based. In a study, sixty-five col-

lege student participants from a large North American university

interacted with the Crystal Island game-based learning environ-

ment. Four students were removed from the initial dataset due to

missing survey or sensor data. This resulted in a final dataset of 61

students (M=20.1 years old, SD=1.56) of which 42 (69%) were female.

Each student played the game until correctly solving the science

mystery or running out of allotted time (maximum of 3 hours).

Gameplay durations ranged from 26.5 to 159.9 minutes (M=68.2,

SD=22.7).
Prior to learning with Crystal Island, participating students

completed a series of questionnaires and a 21-item, 4-option

multiple-choice microbiology pre-test assessment to measure prior

knowledge (M=11.84, SD=2.74). The researchers then calibrated an

eye tracker and facial expression analysis software for the students.

After calibration, students were instructed to begin playing Crys-

tal Island, which started with a tutorial that introduced students

to the overall objective of the learning session, which was to solve

the mystery illness affecting the inhabitants on the island. Students

then attempted to solve the science mystery. After interacting with

Crystal Island, the Intrinsic Motivation Inventory (IMI) [41] was

administered. For the purposes of this paper, the 7-point Interest-

Enjoyment subscale (𝛼=0.96; M=4.67, SD=1.37) was the primary

subscale utilized to operationalize interest. Afterward, students

completed a 21-item, 4-option multiple-choice post-test assessment

similar to the pre-test assessment to measure acquired knowledge

about microbiology (M=14.13, SD=2.85).

3.2.2 Crystal Island – Reflection. The second game-based

learning environment used in this work is a different version of

the Crystal Island environment. Students played a version of

Crystal Island that prompted them periodically to reflect on what

they had learned and their upcoming plans in the game (i.e., “In

your own words, please describe the most important things that

you’ve learned so far, and what is your plan moving forward?”).

The embedded reflection prompts were designed to elicit reflective

thinking, thus encouraging students to monitor and adapt their

learning processes based on their game-based learning behaviors

and problem-solving plans throughout the game thus far [26, 51].

The prompts were administered after key plot points andmilestones

in the game’s science problem scenario.

Eighth-grade students from a middle school in the mid-Atlantic

region were enrolled as part of two separate classroom studies.

We combine the data collected across the 2018 (n=61) and 2019

(n=95) studies into a single dataset and analyze it in aggregate.

After removing students with missing data (e.g., absences, failure to

complete post-test survey), the final dataset was composed of data

from 118 students. The average age of students was 13.6 (SD=0.5),
with 55 male, 60 female, and 3 students responding as Other. There

were 36% of students who identified as White, 27% as Black or

African American, 18% as Hispanic or Latino, 2% as Asian, 1% as

American Indian or Alaskan Native, and 15% as Other.

The pre-study survey included a 17-item multiple-choice con-

tent knowledge assessment on the student’s microbiology content

knowledge (M=6.78, SD=2.75). After students were introduced to

the game and the purpose of the study, they began playing the

tutorial phase of the game. Once finished with the tutorial, students

had full agency to explore the island and investigate the mysterious

illness. At several plot points in the game, students were asked to

reflect on their learning by providing a free-response description of

their game progress and upcoming problem-solving plans. Students

were prompted up to five times at selected trigger points in the
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game chosen to minimize disruption to gameplay. After the stu-

dents played Crystal Island, researchers administered a post-test

that contained a separate set of 17-items addressing the same micro-

biology content knowledge (M=7.36, SD=3.36). All the information

needed to answer the questions on both assessments could be found

in Crystal Island, whether through books or articles, dialogue

with in-game characters, or by viewing informational posters. After

gameplay, the same Interest-Enjoyment subscale of the IMI survey

was administered (𝛼=0.90; M=5.10, SD=1.6). The average gameplay

duration across all students was 76.3 minutes (SD=19.5). After all
students had either solved the mystery (72%) or run out of time

(28%), they were directed to the post-study survey.

3.3 Data Coding and Processing
3.3.1 Student Knowledge. To capture prior knowledge of microbi-

ology, we first encoded the students’ total correct answers on the

pre-test for both Crystal Island – Sensor-Based and Crystal Is-

land – Reflection using a binary representation for each question.

Similarly, we counted the total number of correct responses on the

post-test for both Crystal Island – Sensor-Based and Crystal

Island – Reflection to operationalize student knowledge, and

we included these data as target variables in our predictive mod-

els. We utilized the overlapping pre- and post-test questions from

each dataset to use a fixed set of labels and input, resulting in 17

pre- and post-test questions each, which were positively correlated

(r=0.51, p<0.05). For the post-test target variable for each dataset,

we converted the predictive task into a classification task by split-

ting the post-test scores into two groups defined by a median split,

where each group contained one-half of the sample scores. Next, we

assigned participants to either a low (0) or high (1) post-test perfor-

mance group. For Crystal Island – Sensor-Based, the low group

was defined as a score of below 12.0 (27 students), and the high

group was defined as a score above or equal to 12.0 (34 students).

For Crystal Island – Reflection, the low group was defined as a

score of below 7.0 (52 students), and the high group was defined as

a score above or equal to 7.0 (66 students). We chose to split the data

using this method over the continuous post-test values and more

granular splits such as tertile splits because of the limited sample

size. The sizeable score difference between groups occurred due to

the different population ages (undergraduate vs. middle grade).

3.3.2 Student Interest. Using the Interest and Enjoyment subscale

of the IMI as described in Sections 3.2.1 and 3.2.2, we encoded

student interest for both Crystal Island – Sensor-Based and

Crystal Island – Reflection. Similar to the median split process

described for student knowledge, we split students into low (0) and

high (1) interest groups based on these scores. For Crystal Island

– Sensor-Based, the low group was defined as a score of below

4.86 (34 students), and the high group was defined as a score above

or equal to 4.86 (27 students). For Crystal Island – Reflection,

the low group was defined as a score of below 5.29 (56 students),

and the high group was defined as a score above or equal to 5.29

(62 students).

3.3.3 Facial Expression Recognition and Feature Representation. We

captured student facial expressions using the FACET facial expres-

sion toolkit [15], which extracts facial features for each video frame

that correspond to the Facial Action Coding System (FACS) [7].

Each facial action unit (AU) was processed to derive a total dura-

tion each student spent exhibiting the given AU. In addition to the

duration of each AU activation, we also computed the total num-

ber of times each AU was exhibited by each student. To compute

the total number of AU occurrences, we counted the number of

times each AU surpassed an intensity threshold of 0.5 for longer

than a duration threshold of 0.5 seconds. This approach reduces

the effect of noise in the sensor measurements [8]. There were 40

total features extracted from students’ facial expression: a total

duration and the total event count for each of the 20 available AUs.

As this is an early prediction setting, each feature was computed

cumulatively over time to enable model predictions at incremental

moments in student gameplay. We describe this process in Section

5.

3.3.4 Gaze-Based Entity Tracking and Eye Tracking Feature Repre-
sentation. Student eye gaze in Crystal Island – Sensor-Based

was captured with the SMI RED 250 eye tracker using a 9-point

calibration. During interactions with the game, the software re-

sponsible for logging student eye gaze data records fixations on

each possible type of in-game object. In the game, there are 145

unique in-game objects. We used the fixations on each individual

game object. In processing these fixations, we calculated the total

duration that each student spent fixating upon each of the objects.

We also computed the total number of fixation events (250 millisec-

onds or longer), a threshold used based on prior research on eye

fixations during reading [40], for each student on each game object.

Using both the counts and the fixation durations resulted in 290

total features for students’ eye gaze. Each feature was computed

cumulatively over time, enabling early prediction at incremental

moments in gameplay.

3.3.5 Reflective Writing Processing. In Crystal Island – Reflec-

tion, students’ written responses to the reflection prompts were en-

coded using word embedding techniques. Specifically, we compared

two language models to embed each written reflection response:

300-dimensional GloVe embeddings [34] and 1024-dimensional

ELMo embeddings [35]. A single embedding representation for

each student’s overall reflections at the time of prediction was com-

puted to enable early prediction by averaging their mean reflection

embeddings across their provided reflections up until the current

time point. Each reflection response embedding was calculated

by averaging word embeddings included in the response using a

language model.

3.3.6 Gameplay Features. Both the Crystal Island – Sensor-

Based and Crystal Island – Reflection datasets include game-

play data captured from students as they interact with the game

environment. We encoded students’ gameplay actions using several

components: milestone completion, action type, action arguments,

and action location. Specifically, each action is represented by a con-

catenation of one-hot encoded vectors for each action component

at each time point. We then sum the sequence of these concate-

nated one-hot vectors up to the point of prediction. This yielded

a count-based feature vector with 130 features, where the counts

identify how many times each type of action and the corresponding

components occurred in the sequence. Each feature vector also
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included the current time (seconds) elapsed from the start of the

game.

4 PREDICTIVE STUDENT MODELS OF
INTEREST AND KNOWLEDGE

To investigate the unified student modeling framework, we built

predictive models of student knowledge and interest that were

informed by the data described above. Using the available multi-

modal data from each dataset, we classified students into low and

high groups for their post-test and interest scores. In the Crystal

Island – Sensor-Based dataset, Pearson correlations indicated

non-significant linear relationships between the post-test and in-

terest scores (r=0.16, p=0.23). However, Pearson correlations did

indicate significant linear relationships between post-test and in-

terest scores in the Crystal Island – Reflection dataset (r=0.23,
p<0.05). We compared different sets of multimodal predictive classi-

fiers trained on the data from students who learned with Crystal

Island – Sensor-Based (n=61) and Crystal Island – Reflection

(n=118) separately. For Crystal Island – Sensor-Based, the total

number of features includes 40 related to facial expression, 290

related to eye gaze, and 130 related to gameplay, for a total of 460

possible multimodal features per student. For Crystal Island – Re-

flection, the total number of features includes either 300 (GloVe)

or 1,024 (ELMo) related to the reflection text and 130 related to

gameplay, resulting in a total of 430 or 1,154 possible multimodal

features per student. In addition to the multimodal features, each

model also used data from the 17 questions from the pre-test. The

training of each predictive model for each dataset was conducted

using 5-fold cross-validation at the student-level, allowing all 61 or

118 students to be either used for training or testing. This means

that 80% and 20% of the students were in the training and testing

sets for each fold, respectively, and there was no overlap of students

in each training and testing set to avoid data leakage.

To account for the high number of possible features in themodels,

we performed feature reduction with principal component analysis

(PCA) in several ways to reduce the chance of overfitting. Within

each cross-validation fold, we performed one of three possible PCA

reductions: no PCA performed (i.e., no feature reduction), PCA per-

formed on each input modality separately, and PCA on the input

modalities jointly. When PCA was performed, the dimensions were

reduced to either 32 or 64 considering our dataset size and findings

from previous research that demonstrated high predictive perfor-

mance with PCA applied to ELMo embeddings [29]. Specifically, to

determine the optimal method of applying PCA across the multi-

modal dataset, we use two variations of feature-level data fusion.

The first approach is performed by concatenating all features from

each modality, and then performing PCA on this set to generate a

final set of either 32 or 64 total features. In the second approach,

PCA was performed on each modality’s feature set separately, gen-

erating sets of 32 or 64 features per modality, which were then

concatenated prior to training the student model. These varying

data fusion techniques allow for the complex inter- and intra-modal

relationships to be leveraged during model training and prediction,

and they can be generalized further. When reporting the results

of the multimodal predictive models for a specific combination of

modalities, we will report the results from the data fusion technique

(i.e., the PCA reduction details) that performed the best rather than

reporting the performance of each possible data fusion technique

due to the space constraints.

Student performance on the post-test and their interest score

were predicted at two-minute intervals of gameplay as well as at

the conclusion of the game. For each interval, we used a cumu-

lative representation of the student data up to that point. In this

analysis, we used the random forest (RF) classification algorithm,

which supports both single-task learning and multi-task learning

[33], for each predictive model. That is, we train an individual RF

classifier to predict either post-test performance or interest, and

we also use an individual RF classifier to predict both outcome

variables. This allowed for easier comparison between the modal-

ity combinations and processing conditions using a single set of

classification algorithms. The input features to each classifier were

the pre-test items, the cumulative representations of the combi-

nation of modalities (i.e., a combination of facial expressions, eye

gaze, gameplay, and reflection text depending on the experimental

setting and modality availability), and elapsed game time. Each of

the cumulative multimodal features were scaled first by elapsed

game time (i.e., each feature sum was divided by the number of

seconds elapsed at that time point). All features were then standard-

ized within the 5-fold cross-validation, and then hyperparameter

tuning of the classifiers occurred on an additional internal 3-fold

cross-validation. The internal cross-validation split the training

set into a training and validation set, which were iteratively used

to compare a set range of model hyperparameters, including the

minimum samples required per leaf node and the total number of

trees.

4.1 Transfer Learning
To evaluate the effectiveness of transferring information from one

source dataset to another target dataset in the multimodal predic-

tive models, we constructed an unsupervised model of the shared

modality between datasets: gameplay. Because both the datasets

consisted of student gameplay with the same feature representa-

tion, it is possible to construct a model that learns a new, reduced

feature set for this modality and apply it to a new target dataset.

This idea is similar to the use of pre-trained language models (e.g.,

ELMo, BERT, T5), where we apply the pre-trained language model

to domain-specific text and obtain a distributed vector represen-

tation of that text. Intuitively, a larger source dataset of gameplay

data will allow for a more expressive unsupervised model to be

trained, and this model can then be applied to new target dataset.

We used a standard autoencoder, a type of neural network where

the model attempts to reconstruct the input from a learned latent

representation, to be used as the unsupervised learning method. In

this analysis, we compared the use of an autoencoder on the game-

play data from each dataset separately. Specifically, we compared

three conditions: (1) training an autoencoder from “scratch” on the

current target dataset without leveraging any information from

another source dataset (i.e., no transfer), (2) applying an autoen-

coder that was first pre-trained on the source dataset’s gameplay

data (similar to applying a pre-trained language model to a new

text corpus), and (3) fine-tuning an autoencoder that was first pre-

trained on the source dataset’s gameplay data on the current target
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dataset’s gameplay data (similar to fine-tuning a language model

on a new domain-specific text corpus).

For Condition 1 (no transfer), the autoencoder is trained on the

training data from the current target dataset. The encoder com-

ponent of this autoencoder is then used to encode both the train-

ing and test data from the target dataset. Then, the RF classifier

is trained on this encoded representation and the features from

any additional modalities. For Condition 2 (transfer without fine-

tuning), the autoencoder is trained on all the gameplay data from

the source dataset, and the trained encoder component is used to

encode both the training and testing gameplay data from the target

dataset. The RF classifier is then trained on this representation as it

was with Condition 1. For Condition 3 (transfer with fine-tuning),

the autoencoder is trained on all the gameplay data from the source

dataset, and then the autoencoder is further trained on the training

data from the target dataset. The fine-tuned encoder is now used to

encode both the training and testing gameplay data from the target

dataset, and the RF classifier is trained and evaluated on this en-

coded data. Each autoencoder was constructed with a total of three

hidden layers of dimensions 64, 32, and 64, meaning the innermost

layer learned has a dimensionality of 32. The models were opti-

mized with Adam [20], and training was terminated through early

stopping with a patience of 5 or a maximum of 100 epochs. For each

transfer learning experiment, we did not use any other feature re-

duction techniques in addition to the autoencoder (i.e., no PCA was

performed in addition to the autoencoders for any modality). This

was done to focus the comparisons on the effect of transfer learning.

This work explores transfer learning across different versions of the

same game-based learning environment. The student populations

and types of data channels differed, making this approach fall under

the framing of covariate shift and domain adaptation, both of which

are included in the transfer learning paradigm [32].

5 RESULTS
To examine how well each combination of students’ multimodal

data classifies student post-test performance and interest in ei-

ther a single-task or multi-task setting, we report the five-fold

cross-validation results for each early prediction model. The critical

metrics for this work include a metric from both early prediction

(standardized convergence point, SCP) [27] and a standard clas-

sification metric (F1 score). SCP measures how early prediction

models can consistently make accurate predictions while penaliz-

ing non-converged sequences (i.e., sequences whose last instance

predictions are incorrect). For each model, we report the early pre-

diction metrics of the best-performing model in terms of SCP across

all possible data fusion and PCA reduction techniques and similarly

report the classification results of the model with the highest F1

score across all possible data fusion techniques. Since SCP aims

to identify model performance at early stages in the prediction

sequence, lower values are better. F1 score aims to summarize how

well the model is predicting the high groups (i.e., 1) by taking the

harmonic mean of the precision and recall.

5.1 Crystal Island – Sensor-Based

We first report the performance of the predictive models with dif-

ferent combinations of modalities for classifying student post-test

score performance and interest for Crystal Island – Sensor-

Based in Tables 1 and 2, respectively. For each table, both the

single-task performance and the multi-task performance are shown.

For each modality configuration, we report the best performance

as determined by SCP and F1 score, and the statistical significance

for the metrics are based on these. The best performing data fu-

sion techniques and PCA reduction dimensions varied across all

modality configurations, so we do not report these aspects of the

best performing modality configurations. Statistical tests were con-

ducted to compare models to the gameplay-only baseline and to

compare multi-task (MTL) and single-task (STL) models. We used

the statistical tests to compare the best performing MTL models to

the best performing STL models to reduce the overall number of

statistical tests. All statistical tests were conducted using the one-

sided Wilcoxon signed-rank test between the performance of the

models in each cross-validation fold. This test is a non-parametric

test because the results from each fold cannot be assumed to be

normally distributed.

5.2 Crystal Island – Reflection

We now report the performance of the predictive models with

different combinations ofmodalities for classifying student post-test

score performance and interest for Crystal Island – Reflection

in Tables 3 and 4, respectively. We again report both the single-task

performance and the multi-task performance. For each modality

configuration, we report the best performance as determined by

SCP and F1 score, and the statistical significance for the metrics

are based on these. The best performing data fusion techniques

and PCA reduction dimensions again varied across all modality

configurations.

5.3 Transfer Learning for Crystal Island –

Sensor-Based

Next, we report the results of transfer learning for Crystal Island

– Sensor-Based. Tables 5 and 6 illustrate the performance for post-

test score and interest, respectively, but we now include instances

where an autoencoder was used on the gameplaymodality. For a fair

comparison, we conducted transfer learning only on the modality

combinations that include the gameplay modality. The non-transfer

(NT) condition is compared to the transfer conditions of pre-trained

(PT) and fine-tuned (FT).

5.4 Transfer Learning for Crystal Island –

Reflection

Next, we report the results of transfer learning for Crystal Island

– Reflection. Tables 7 and 8 illustrate the performance for post-

test score and interest, respectively, but we now include instances

where an autoencoder was used on the gameplaymodality. For a fair

comparison, we conducted transfer learning only on the modality

combinations that include the gameplay modality.

6 DISCUSSION
We investigated the effectiveness of combining multimodal, multi-

task, and early prediction components into a single, unified student
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Table 1: Post-test score prediction results for Crystal Island – Sensor-Based. * indicates the model outperforms the gameplay-
only model (p < 0.05), and ∧ indicates the MTL model outperforms the best STL model (p < 0.05). g, e, and f represent gameplay,
eye gaze, and facial expressions, respectively. Bolded models outperform baselines in terms of SCP or F1 score.

Single-Task

Modalities Maj. Class {g} {e} {f} {g, e} {e, f} {g, f} {g, e, f}

SCP 0.531 0.554 0.503* 0.593 0.541 0.655 0.507* 0.590

F1 0.694* 0.628 0.682* 0.557 0.659 0.609 0.715* 0.598

Multi-Task

Modalities Maj. Class {g} {e} {f} {g, e} {e, f} {g, f} {g, e, f}

SCP 0.531 0.557 0.461* 0.556 0.491* 0.572 0.500* 0.583

F1 0.694* 0.647 0.699* 0.620 0.662 0.614 0.693* 0.614

Table 2: Interest prediction results for Crystal Island – Sensor-Based. * indicates the model outperforms the gameplay-only
model (p < 0.05), and ∧ indicates the MTL model outperforms the best STL model (p < 0.05). g, e, and f represent gameplay, eye
gaze, and facial expressions, respectively. Bolded models outperform baselines in terms of SCP or F1 score.

Single-Task

Modalities Maj. Class {g} {e} {f} {g, e} {e, f} {g, f} {g, e, f}
SCP 0.579 0.600 0.698 0.593 0.556* 0.595 0.554* 0.552*
F1 0.000 0.603 0.573 0.636 0.717* 0.636 0.702* 0.717*

Multi-Task

Modalities Maj. Class {g} {e} {f} {g, e} {e, f} {g, f} {g, e, f}
SCP 0.579 0.575 0.714 0.551 0.514* 0.580 0.514* 0.473*
F1 0.000 0.607 0.542 0.632 0.692* 0.630 0.698* 0.769*

Table 3: Post-test score prediction results for Crystal Island – Reflection. * indicates the model outperforms the gameplay-only
model (p < 0.05), and ∧ indicates the MTL model outperforms the best STL model (p < 0.05). g and t represent gameplay and
reflection text, respectively. Bolded models outperform baselines in terms of SCP or F1 score.

Single-Task

Modalities Maj. Class {g} {t} {g, t}
SCP 0.474 0.525 0.438* 0.422*
F1 0.709 0.681 0.756* 0.726*

Multi-Task

Modalities Maj. Class {g} {t} {g, t}
SCP 0.474 0.524 0.394* 0.428*
F1 0.709 0.688 0.740* 0.749*

modeling framework. The goal of the framework is to classify stu-

dents’ post-test score performance and interest in the Crystal

Island game-based learning environment. Using available multi-

modal data streams from the datasets, we investigated how effec-

tively different combinations of modalities performed in classifica-

tion models of the two target variables, both in a single-task and

multi-task setting. Additionally, we evaluated the ability of each of

these models to make accurate predictions at early points within

students’ gameplay. The results indicated that multimodal data can

accurately predict both students’ post-test scores and interest. Ad-

ditionally, multi-task models were able to improve results in many

cases when predicting student interest as compared to single-task

models but did not markedly improve performance when predicting

post-test scores. Transfer learning was able to improve results in

cases where a larger amount of data was available in the source

dataset and in cases where fewer modalities were available overall.

6.1 Performance of Multimodal Models of
Post-Test Scores and Interest

For both predicting post-test scores and interest, we evaluated base-

line models that only incorporated student gameplay data. The

results in Table 1 for Crystal Island – Sensor-Based indicate
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Table 4: Interest prediction results for Crystal Island – Reflection. * indicates the model outperforms the gameplay-only model
(p < 0.05), and ∧ indicates the MTL model outperforms the best STL model (p < 0.05). g and t represent gameplay and reflection
text, respectively. Bolded models outperform baselines in terms of SCP or F1 score.

Single-Task

Modalities Maj. Class {g} {t} {g, t}
SCP 0.596 0.669 0.564* 0.577*
F1 0.673* 0.559 0.627* 0.634*

Multi-Task

Modalities Maj. Class {g} {t} {g, t}
SCP 0.596 0.658 0.510* 0.507*
F1 0.673* 0.587 0.649* 0.695*

Table 5: Post-test score prediction results with transfer for Crystal Island – Sensor-Based. * indicates the transfer learning
model outperforms the non-transfer (NT) model (p < 0.05), and ∧ indicates the MTL model outperforms the best STL model (p <
0.05). g, e, and f represent gameplay, eye gaze, and facial expressions, respectively. Bolded models outperform baselines in
terms of SCP or F1 score.

Single-Task

Modalities
Transfer

{g}
FT

{g}

PT

{g}

NT

{g,e}

FT

{g,e}
PT

{g,e}

NT

{g,f}
FT

{g,f}

PT

{g,f}

NT

{g,e,f}

FT

{g,e,f}

PT

{g,e,f}

NT

SCP 0.568* 0.597 0.608 0.702 0.651* 0.715 0.529* 0.540 0.584 0.663 0.659 0.669

F1 0.620* 0.607 0.567 0.619 0.648* 0.588 0.663* 0.540 0.592 0.575 0.587 0.577

Multi-Task

Modalities
Transfer

{g}
FT

{g}
PT

{g}

NT

{g,e}
FT

{g,e}

PT

{g,e}

NT

{g,f}
FT

{g,f}
PT

{g,f}

NT

{g,e,f}

FT

{g,e,f}

PT

{g,e,f}

NT

SCP 0.565* 0.551* 0.605 0.575* 0.622 0.656 0.527* 0.529* 0.585 0.649 0.647 0.630

F1 0.669* 0.630 0.623 0.643* 0.628 0.603 0.664* 0.666* 0.598 0.611 0.586 0.615

Table 6: Interest prediction results with transfer for Crystal Island – Sensor-Based. * indicates the transfer learning model
outperforms the non-transfer (NT) model (p < 0.05), and ∧ indicates the MTL model outperforms the best STL model (p < 0.05).
g, e, and f represent gameplay, eye gaze, and facial expressions, respectively. Bolded models outperform baselines in terms of
SCP or F1 score.

Single-Task

Modalities
Transfer

{g}
FT

{g}

PT

{g}

NT

{g,e}
FT

{g,e}
PT

{g,e}

NT

{g,f}

FT

{g,f}
PT

{g,f}

NT

{g,e,f}

FT

{g,e,f}

PT

{g,e,f}

NT

SCP 0.630* 0.676 0.698 0.768 0.712* 0.783 0.679 0.611* 0.673 0.669 0.616 0.643

F1 0.516 0.511 0.520 0.599* 0.542 0.536 0.563 0.608* 0.554 0.631 0.641 0.656

Multi-Task

Modalities
Transfer

{g}
FT

{g}

PT

{g}

NT

{g,e}
FT

{g,e}
PT

{g,e}

NT

{g,f}

FT

{g,f}
PT

{g,f}

NT

{g,e,f}

FT

{g,e,f}

PT

{g,e,f}

NT

SCP 0.589*∧ 0.697 0.709 0.640* 0.679* 0.741 0.667 0.599* 0.653 0.673 0.700 0.646

F1 0.573* 0.501 0.466 0.641*∧ 0.637 0.553 0.564 0.593 0.566 0.614 0.612 0.619

that in the single-task setting, both the unimodal model of eye

gaze-only and the multimodal model of gameplay and facial ex-

pressions outperformed this gameplay-only baseline in both the

SCP and F1 score metrics. It is notable that the combination of all

three available modalities may be inhibitive for predicting post-test

scores. For predicting interest, we found that several different com-

binations of modalities outperformed the gameplay-only baseline

(Table 2). Specifically, the gameplay plus eye gaze, gameplay plus

facial expressions, and gameplay plus eye gaze and facial expres-

sions combinations all outperformed the gameplay-only single-task
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Table 7: Post-test score prediction results with transfer for Crystal Island – Reflection. * indicates the transfer learning model
outperforms the non-transfer (NT) model (p < 0.05), and ∧ indicates the MTL model outperforms the best STL model (p < 0.05).
g and t represent gameplay and reflection text, respectively. Bolded models outperform baselines in terms of SCP or F1 score.

Single-Task

Modalities
Transfer

{g}

FT

{g}

PT

{g}

NT

{g,t}
FT

{g,t}

PT

{g,t}

NT

SCP 0.473 0.477 0.476 0.423* 0.464 0.473

F1 0.667 0.679 0.673 0.752* 0.734 0.700

Multi-Task

Modalities
Transfer

{g}

FT

{g}

PT

{g}

NT

{g,t}
FT

{g,t}
PT

{g,t}

NT

SCP 0.451 0.457 0.479 0.504* 0.501* 0.553

F1 0.677 0.680 0.670 0.731* 0.731* 0.675

Table 8: Interest prediction results with transfer for Crystal Island – Reflection. * indicates the transfer learning model
outperforms the non-transfer (NT) model (p < 0.05), and ∧ indicates the MTL model outperforms the best STL model (p < 0.05).
g and t represent gameplay and reflection text, respectively. Bolded models outperform baselines in terms of SCP or F1 score.

Single-Task

Modalities
Transfer

{g}

FT

{g}

PT

{g}

NT

{g,t}
FT

{g,t}
PT

{g,t}

NT

SCP 0.682 0.690 0.671 0.620* 0.613* 0.686

F1 0.508 0.520 0.550 0.593* 0.576* 0.522

Multi-Task

Modalities
Transfer

{g}

FT

{g}

PT

{g}

NT

{g,t}
FT

{g,t}
PT

{g,t}

NT

SCP 0.699 0.687 0.667 0.579* 0.590* 0.724

F1 0.491 0.505 0.500 0.624* 0.613* 0.474

model in terms of both SCP and F1 score. For Crystal Island –

Reflection, the findings in Tables 3 and 4 reflect the same notion

that by incorporating another modality in addition to gameplay,

the early prediction models are better able to predict both post-test

scores and interest, respectively. For this dataset, by adding reflec-

tion text as an additional modality to gameplay, the models are

statistically better in terms of both SCP and F1 score.

We observed that reflection text alone in an early prediction

model outperforms gameplay for predicting both post-test score

performance and interest. It is possible that the models are bet-

ter able to use direct feedback from students (e.g., topics they are

struggling with) about their learning process (rather than students’

in-game actions) as indicators of their knowledge and interest in the

game. A game-based learning environment equipped with informa-

tion about both students’ gameplay and reflection text appears to

be capable of making accurate predictions about students’ post-test

scores and interest. Additionally, we observed that the difference

in performance between the post-test score models and interest

models is much greater in Crystal Island – Reflection than it

is for Crystal Island – Sensor-Based. Specifically, in Crystal

Island – Reflection, the models of student post-test scores are

slightly better than the models of student post-test scores in Crys-

tal Island – Sensor-Based, and the opposite relationship is true

for models of student interest. The key differences between the

two datasets could influence this disparity. It is possible that in the

case of predicting post-test performance, using student reflection

text is more predictive than either eye gaze or facial expressions,

when added to gameplay data. This is somewhat intuitive, because

students are asked to reflect on their learning process and are di-

rectly providing information about what they know. This may not

be the case for interest, however. Student facial expressions and eye

gaze may be better at capturing affective states such as boredom or

frustration, which may be more related to their interest levels in

the game when compared to their reflection text.

6.2 Performance of Multi-Task Models of
Post-Test Scores and Interest

For both predicting post-test scores and interest, we compared the

performance of multi-task models of student post-test score and

interest to their single-task counterparts as baselines. The results

in Tables 1 and 2 for Crystal Island – Sensor-Based indicate that

multi-task learning does not improve predictive performance signif-

icantly for post-test score prediction, but it does help significantly
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for interest prediction. In general, the same combination of modali-

ties is predictive in the MTL setting compared to the STL setting for

the respective target variables. However, the results indicate that

predicting interest with MTL yields more improvement over STL

models due to the joint prediction of post-test scores and interest.

This finding highlights the connection between post-test scores

and student interest in game-based learning, which aligns with pre-

vious theory [42]. For Crystal Island – Reflection, the findings

in Tables 3 and 4 are also in support of multi-task models of student

interest but not so for post-test scores. Specifically, there are no

statistically significant differences between the best performing

STL and MTL models for predicting post-test score performance in

this dataset, but there are statistically significant differences in the

models of student interest. This finding from both datasets could

indicate that by also forecasting what a student knows, the models

are better able to detect how interested they are in the game itself.

This could be because students are more likely to be interested in

their experience if they are learning about the subject matter. These

findings have broad implications for predictive student modeling

in game-based learning environments. While MTL was more useful

in enhancing the predictions of student interest, prior work has

found that as the number of tasks increases, predictive performance

also increases for these tasks [11]. It is also possible to represent

student knowledge by the student’s mastery of individual concepts,

such as by the student’s predicted responses to individual post-test

questions. This also would enable adaptive feedback mechanisms

to pinpoint which specific areas the predictive model thinks the

student needs support.

6.3 Performance of Transferred Models of
Post-Test Scores and Interest

A final goal of this work was to investigate how the unified mul-

timodal, multi-task, early prediction framework can be leveraged

from one domain (i.e., the source dataset) and applied to another (i.e.,

the target dataset). To this end, we used the input information that

was shared between the two domains: gameplay data. Because both

datasets share the same core game-based learning environment,

the gameplay logs from each dataset are very similar. To leverage

information between the two datasets, we trained an autoencoder

on the gameplay from a source dataset and applied the pre-trained

model to the target dataset as a way of applying a feature reduction

that had been previously trained. We compared the use of no trans-

fer (NT) to transfer with two variations: 1) applying the pre-trained

gameplay model to the current dataset’s gameplay data as-is (PT),

and 2) fine-tuning the pre-trained gameplay model to the current

dataset’s gameplay data in its training set (FT). Tables 5 and 6 il-

lustrate the performance of these conditions for Crystal Island –

Sensor-Based. The relationships between multimodal data versus

unimodal data and MTL versus STL remain the same, but we note

that by transferring the representation of the gameplaymodality, we

see a statistically significant increase in the predictive performance

for both post-test scores and interest in many cases. In particular,

we notice the biggest increase in performance when there are fewer

modalities overall, meaning that gameplay is relied on more heavily

for the prediction. For the results in these two tables for both trans-

fer cases (PT and FT), the autoencoders were first trained on the

gameplay data from Crystal Island – Reflection (n=118), which
is a dataset of nearly double the size as Crystal Island – Sensor-

Based (n=61). This increase in performance in this direction is a

common characteristic of unsupervised machine learning models

that were first trained on larger dataset. This is often seen in the

field of natural language processing, where language models (e.g.,

ELMo, BERT, T5) are first trained on extremely large text corpora.

The performance of the full set of modalities does not improve in

the transferred setting, indicating that the models are more heavily

relying on information from the sensor-based modalities compared

to the gameplay modality. It is also noteworthy that both transfer

conditions outperform the non-transfer condition at various points,

with no clear best approach when multiple modalities are used.

However, when gameplay is the only modality present, a transfer

approach that involves fine-tuning appears to be superior in terms

of the SCP and F1 score metrics. Tables 7 and 8 illustrate the perfor-

mance of the transfer learning experiments for Crystal Island –

Reflection. This means that for both transfer conditions (PT and

FT), the autoencoders were trained first on gameplay data from

Crystal Island – Sensor-Based and either applied as-is or fine-

tuned on the new gameplay data, respectively. While it appears that

models that transfer the gameplay representation outperform the

non-transfer models for both post-test score and interest prediction

for the multimodal combinations, we note that the gameplay-only

models do not benefit from transfer. This finding is supported by

the earlier point concerning the sizes of the two datasets. The Crys-

tal Island – Sensor-Based dataset is much smaller, so a model

first trained on this dataset is less likely to boost performance of

a model that is trained and evaluated on a much larger dataset. It

is notable, however, that the models incorporating both gameplay

and reflection text are improved by leveraging gameplay data from

the Crystal Island – Sensor-Based dataset. This is likely due

to the models more heavily relying on text for these predictive

tasks and benefiting from the richness of the previous dataset. As a

general point, the transfer appears to be much more effective when

first pre-training on the Crystal Island – Reflection dataset and

applying the gameplay representation from the autoencoder to the

Crystal Island – Sensor-Based dataset compared to the oppo-

site direction. The transfer results highlight the promise of using

similar data that was collected from a previous version of the game-

based learning environment. More broadly, when there are limited

modalities available, it is critical to leverage information from other

source datasets to improve predictive model performance.

7 CONCLUSION
Predictive student models enable game-based learning environ-

ments to adapt to individual students’ needs in real-time. Advances

in sensor-based technologies and natural language processing intro-

duce the opportunity to leverage multimodal data channels during

game-based learning. We developed a unified student modeling

framework consisting of multimodal learning analytics, multi-task

learning, transfer learning, and early prediction. When combined,

the unified framework was evaluated using two datasets collected

from student interactions with the Crystal Island game-based

learning environment. Approaches to improve the predictive perfor-

mance of the framework by transferring the trained model from one
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dataset to another were also investigated. The framework was eval-

uated by early prediction convergence metrics as well as standard

performance metrics on all predictions. Evaluations demonstrated

that using an autoencoder to encode the gameplay data from one

game-based learning dataset and applying the encoding to the

other dataset improved predictive model results for predicting both

post-test scores and interest. Multi-task learning was able to im-

prove predictive results for interest, but not post-test scores. These

findings, and the overall unified framework, advance the field of

predictive student modeling by creating a unified framework to

drive adaptive and personalized learning.

The findings presented here suggest several promising direc-

tions for future work. First, exploring more expressive and effective

feature representations for each modality will be important. For

all modalities, we used a static feature representation to both syn-

chronize each input source and inspect the relationships between

each modality with both student post-test performance and interest

after game-based learning. A promising alternative could be a tem-

poral representation that incorporates the dynamic nature of the

data. A sequential model that leverages this representation could

achieve more accurate, fine-grained early predictions of student

post-test performance and interest. Second, it will be critical to in-

vestigate other modeling techniques (e.g., deep learning) to further

improve predictions. With the insight of which features perform

well in both the predictive tasks, more sophisticated modeling tech-

niques may be able to achieve even higher accuracy. More advanced

transfer learning approaches (e.g., adversarial-based domain adap-

tation) could further improve results. A final promising direction

is to investigate how multimodal models can be incorporated into

game-based learning environments to support real-time adaptive

scaffolding. This will set the stage for empirically assessing the effi-

cacy of early predictive models that integrate students’ multimodal

data to improve student learning outcomes.
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