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ABSTRACT
Game-based learning environments have the distinctive capacity
to promote learning experiences that are both engaging and ef-
fective. Recent advances in sensor-based technologies (e.g., facial
expression analysis and eye gaze tracking) and natural language
processing have introduced the opportunity to leverage multimodal
data streams for learning analytics. Learning analytics and student
modeling informed by multimodal data captured during students’
interactions with game-based learning environments hold signi�-
cant promise for designing e�ective learning environments that de-
tect unproductive student behaviors and provide adaptive support
for students during learning. Learning analytics frameworks that
can accurately predict student learning outcomes early in students’
interactions hold considerable promise for enabling environments
to dynamically adapt to individual student needs. In this paper, we
investigate a multimodal, multi-task predictive student modeling
framework for game-based learning environments. The framework
is evaluated on two datasets of game-based learning interactions
from two student populations (n=61 and n=118) who interacted
with two versions of a game-based learning environment for micro-
biology education. The framework leverages available multimodal
data channels from the datasets to simultaneously predict student
post-test performance and interest. In addition to inducing models
for each dataset individually, this work investigates the ability to
use information learned from one source dataset to improve mod-
els based on another target dataset (i.e., transfer learning using
pre-trained models). Results from a series of ablation experiments
indicate the di�erences in predictive capacity among a combination
of modalities including gameplay, eye gaze, facial expressions, and
re�ection text for predicting the two target variables. In addition,
multi-task models were able to improve predictive performance
compared to single-task baselines for one target variable, but not
both. Lastly, transfer learning showed promise in improving pre-
dictive capacity in both datasets.
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1 INTRODUCTION
Student interest plays a critical role in learning [36]. Intelligent
game-based learning environments are a form of learning environ-
ment that are designed to promote student interest while enhancing
performance or knowledge on a particular subject through adap-
tive support in real-time [22, 50]. Automatically detecting speci�c
student behaviors and modeling student knowledge and skills is a
promising approach to drive adaptations in game-based learning
environments [23, 47]. However, this approach poses signi�cant
challenges due to the complexity of student learning and interest.
Multimodal learning analytics hold considerable promise for mod-
eling complex student learning behaviors in game-based learning
by leveraging advances in sensor-based technologies (e.g., facial
expression toolkits, eye trackers) and natural language processing
[8]. Predictive student models of complex learning phenomena that
leverage multimodal learning analytics must also be able to make
accurate predictions at early stages (i.e., as students are learning) in
student gameplay for the system to appropriately make adaptations
to support the student. Few studies have investigated the degree
to which separate modalities impact the performance of predictive
student models in game-based learning, and the capacity to use
multimodal data to predict students’ post-test performance and
interest at early points during gameplay remains unexplored.

Inducing multimodal predictive student models of post-test per-
formance and interest in game-based learning poses signi�cant
challenges and opportunities. First, the success of multimodal data
for student modeling is not universal, as prior research has indicated
that for certain learning-related constructs, additional modalities
can provide additive or even super-additive e�ects on the accuracy
of student models, but in other cases, more modalities can have
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inhibitory e�ects on model accuracy [6]. As a result, investigating
the impact of separate modalities in the prediction of each learn-
ing outcome or motivational construct is critical. Second, these
motivational constructs and learning outcomes also have complex
relationships [16], which suggests that predictive student models
may be able to leverage shared information learned by predict-
ing each outcome simultaneously and improve predictive accuracy
across multiple relevant modeling tasks. A potential solution to this
problem is multi-task learning, wherein each learning outcome or
motivational construct is a target variable in the same multimodal
predictive student model. Third, di�erent game-based learning envi-
ronments and student populations may elicit di�erent relationships
between multimodal data, post-test performance, and interest, ne-
cessitating a separate model for each student population and game-
based learning environment [36]. A key research question then is,
how can multimodal predictive models be adapted across di�erent
student populations, game-based learning environments, and do-
mains to improve the model’s predictive performance? A promising
approach for leveraging information across domains is the use of
transfer learning (speci�cally, domain adaptation) [32]. Transfer
learning in this context would include leveraging learned represen-
tations of overlapping, but not identical, multimodal data across
populations in game-based learning environments for predictive
student modeling tasks. However, research on leveraging transfer
learning to create personalized predictive student models in game-
based learning is still in early stages [44] and requires additional
investigation.

In this paper, we introduce a uni�ed multimodal predictive stu-
dent modeling framework using two separate datasets collected
using theC������ I����� game-based learning environment for mi-
crobiology education: C������ I����� – S������B���� and C����
��� I����� – R���������. In C������ I����� – S������B����,
undergraduate students interacted with the game, and gameplay
interaction logs, student eye gaze, and student facial expressions
were collected. In C������ I����� – R���������, a group of middle
school students interacted with a di�erent version of the game
that did not include sensor data, where the system prompted the
students for text-based re�ections of their learning at various plot
points during their interactions. For both datasets, we extracted
the temporal features associated with the gameplay and additional
available modalities and used them as input to multi-task early pre-
diction models of post-test score and interest, which are the target
variables in this work. We then investigated the use of transfer
learning as a means to improve the performance of multimodal
predictive models for each dataset by employing an unsupervised
learning technique (i.e., an autoencoder) to learn representations
of the shared modality (i.e., student gameplay) between domains.
This is the �rst work to combine the three components of (1) mul-
timodal learning analytics, (2) early prediction, and (3) multi-task
learning into a single, uni�ed predictive student modeling frame-
work for game-based learning. Additionally, this paper contributes
�ndings on the e�cacy of transfer learning between multiple stu-
dent populations and game-based learning environments, where
there is a shared modality between the datasets. The resulting
framework o�ers the capability of identifying students who are
disinterested or struggling with learning at early points throughout

their learning experience, which are two critical issues that can af-
fect the learning and problem-solving experience. These identi�ed
instances can then guide a separate adaptive sca�olding system to
give personalized support to the student and to keep track of the
student’s progress.

2 RELATEDWORK
Multimodal learning analytics has been the subject of growing inter-
est in recent years for its focus on creating a data-rich understand-
ing of student learning and associated behaviors and constructs
[3, 4, 30, 31]. Multimodal data have been used to model student
engagement [18, 52] and knowledge [8, 24, 43], and have been uti-
lized to support teachers in classrooms [1, 2, 38]. Modalities such as
eye gaze [39], facial expressions [49], and student-generated text-
based responses [21] have been incorporated into student models.
In game-based learning environments, multimodal data show con-
siderable promise for modeling student post-test performance and
interest [8]. Previous studies have leveraged multimodal data in
game-based learning environments [13], but few studies have ob-
served the degree to which multimodal data can make accurate
predictions of student learning-related constructs at early points in
student gameplay (e.g., [9]).

Predictive student modeling holds signi�cant potential for im-
proving learning experiences and supporting struggling students.
By observing students’ learning behaviors over time, models could
predict student knowledge and interest in the subject area, which
could then be used in real-time to inform adaptive support. Using
student gameplay interactions and other sources of data that pro-
vide evidence of student learning, this modeling approach aims to
predict students’ future competencies and characteristics using the
data up to a speci�c moment [45]. This algorithmic technique is
known as early prediction, which has seen signi�cant success in stu-
dent modeling applications [17, 28]. Prior research has investigated
predictive student models of student knowledge in game-based
learning [10], but limited work has investigated predictive student
models of interest.

Due to the complex relationships between constructs such as
interest and learning-related outcomes, modeling these variables
by leveraging the related information could prove bene�cial. Little
work has explored the use of multi-task learning to account for
multiple, related learning outcomes and constructs, especially in
the context of game-based learning. Multi-task learning has been
studied in several domains, such as computer vision [19] and natu-
ral language processing [46], but less so in student modeling. Prior
work used student behaviors in an adaptive learning environment
to simultaneously model hint-taking and knowledge [5]. Other
work incorporated multimodal data into multi-task student a�ect
models in game-based learning, �nding that jointly predicting a�ec-
tive states yields improved results over single-task baselines [14].
To improve performance further, transfer learning between student
populations or learning environments can provide the student mod-
els access to rich information from other datasets, but this family of
algorithms has not been extensively studied in game-based learning.
A common problem in student modeling is the cold start problem,
where modeling new students or learning environments can be
di�cult without prior information [37]. Transfer learning has been
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Figure 1: C������ I����� game-based learning environment.

adopted as one approach to mitigating this issue, including work
in programming environments [25] and game-based learning envi-
ronments [12, 44]. Building on this and other work in the context
of game-based learning, we present a uni�ed framework for multi-
modal learning analytics, predictive student modeling, multi-task
learning, and transfer learning.

3 METHOD
To induce predictive student models of interest and post-test per-
formance, we utilized two datasets stemming from the same game-
based learning environment, C������ I�����. In the �rst, C������
I����� – S������B����, we equipped the game-based learning
environment with a suite of multimodal sensors to collect student
gameplay, facial expression, and eye gaze data. In the second, C����
��� I����� – R���������, we equipped the game-based learning
environment with a re�ection tool that allowed students to re�ect
on their progress in the game. The written (i.e., textual) re�ections
were collected in conjunction with student gameplay as the stu-
dents interacted with C������ I�����. The speci�c datasets, study
participants, and procedures, are described below.

3.1 C������ I����� Game-Based Learning
Environment

C������ I����� is a game-based learning environment for microbi-
ology education (Figure 1) [48]. This paper includes data collected
from two versions of the game with two di�erent student popu-
lations. In the game, students play the role of a medical detective
whose goal is to uncover a mysterious disease outbreak on a re-
mote island. Students collect information by reading virtual books,
talking to non-player characters, and testing hypotheses using the
in-game laboratory equipment. All student actions, movement, di-
alogue, and interactions with in-game objects are recorded and
logged for further analysis. Once the student has gathered evidence,
they are able to submit a diagnosis and treatment plan to the island’s
camp nurse.

3.2 Multimodal Data Collections
3.2.1 C������ I����� – S������B����. In a study, sixty-�ve col-
lege student participants from a large North American university
interacted with the C������ I����� game-based learning environ-
ment. Four students were removed from the initial dataset due to
missing survey or sensor data. This resulted in a �nal dataset of 61

students (M=20.1 years old, SD=1.56) of which 42 (69%) were female.
Each student played the game until correctly solving the science
mystery or running out of allotted time (maximum of 3 hours).
Gameplay durations ranged from 26.5 to 159.9 minutes (M=68.2,
SD=22.7).

Prior to learning with C������ I�����, participating students
completed a series of questionnaires and a 21-item, 4-option
multiple-choice microbiology pre-test assessment to measure prior
knowledge (M=11.84, SD=2.74). The researchers then calibrated an
eye tracker and facial expression analysis software for the students.
After calibration, students were instructed to begin playing C����
��� I�����, which started with a tutorial that introduced students
to the overall objective of the learning session, which was to solve
the mystery illness a�ecting the inhabitants on the island. Students
then attempted to solve the science mystery. After interacting with
C������ I�����, the Intrinsic Motivation Inventory (IMI) [41] was
administered. For the purposes of this paper, the 7-point Interest-
Enjoyment subscale (U=0.96; M=4.67, SD=1.37) was the primary
subscale utilized to operationalize interest. Afterward, students
completed a 21-item, 4-option multiple-choice post-test assessment
similar to the pre-test assessment to measure acquired knowledge
about microbiology (M=14.13, SD=2.85).

3.2.2 C������ I����� – R���������. The second game-based
learning environment used in this work is a di�erent version of
the C������ I����� environment. Students played a version of
C������ I����� that prompted them periodically to re�ect on what
they had learned and their upcoming plans in the game (i.e., “In
your own words, please describe the most important things that
you’ve learned so far, and what is your plan moving forward?”).
The embedded re�ection prompts were designed to elicit re�ective
thinking, thus encouraging students to monitor and adapt their
learning processes based on their game-based learning behaviors
and problem-solving plans throughout the game thus far [26, 51].
The prompts were administered after key plot points andmilestones
in the game’s science problem scenario.

Eighth-grade students from a middle school in the mid-Atlantic
region were enrolled as part of two separate classroom studies.
We combine the data collected across the 2018 (n=61) and 2019
(n=95) studies into a single dataset and analyze it in aggregate.
After removing students with missing data (e.g., absences, failure to
complete post-test survey), the �nal dataset was composed of data
from 118 students. The average age of students was 13.6 (SD=0.5),
with 55 male, 60 female, and 3 students responding as Other. There
were 36% of students who identi�ed as White, 27% as Black or
African American, 18% as Hispanic or Latino, 2% as Asian, 1% as
American Indian or Alaskan Native, and 15% as Other.

The pre-study survey included a 17-item multiple-choice con-
tent knowledge assessment on the student’s microbiology content
knowledge (M=6.78, SD=2.75). After students were introduced to
the game and the purpose of the study, they began playing the
tutorial phase of the game. Once �nished with the tutorial, students
had full agency to explore the island and investigate the mysterious
illness. At several plot points in the game, students were asked to
re�ect on their learning by providing a free-response description of
their game progress and upcoming problem-solving plans. Students
were prompted up to �ve times at selected trigger points in the
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game chosen to minimize disruption to gameplay. After the stu-
dents played C������ I�����, researchers administered a post-test
that contained a separate set of 17-items addressing the same micro-
biology content knowledge (M=7.36, SD=3.36). All the information
needed to answer the questions on both assessments could be found
in C������ I�����, whether through books or articles, dialogue
with in-game characters, or by viewing informational posters. After
gameplay, the same Interest-Enjoyment subscale of the IMI survey
was administered (U=0.90; M=5.10, SD=1.6). The average gameplay
duration across all students was 76.3 minutes (SD=19.5). After all
students had either solved the mystery (72%) or run out of time
(28%), they were directed to the post-study survey.

3.3 Data Coding and Processing
3.3.1 Student Knowledge. To capture prior knowledge of microbi-
ology, we �rst encoded the students’ total correct answers on the
pre-test for both C������ I����� – S������B���� and C������ I��
���� – R��������� using a binary representation for each question.
Similarly, we counted the total number of correct responses on the
post-test for both C������ I����� – S������B���� and C������
I����� – R��������� to operationalize student knowledge, and
we included these data as target variables in our predictive mod-
els. We utilized the overlapping pre- and post-test questions from
each dataset to use a �xed set of labels and input, resulting in 17
pre- and post-test questions each, which were positively correlated
(r=0.51, p<0.05). For the post-test target variable for each dataset,
we converted the predictive task into a classi�cation task by split-
ting the post-test scores into two groups de�ned by a median split,
where each group contained one-half of the sample scores. Next, we
assigned participants to either a low (0) or high (1) post-test perfor-
mance group. For C������ I����� – S������B����, the low group
was de�ned as a score of below 12.0 (27 students), and the high
group was de�ned as a score above or equal to 12.0 (34 students).
For C������ I����� – R���������, the low group was de�ned as a
score of below 7.0 (52 students), and the high group was de�ned as
a score above or equal to 7.0 (66 students). We chose to split the data
using this method over the continuous post-test values and more
granular splits such as tertile splits because of the limited sample
size. The sizeable score di�erence between groups occurred due to
the di�erent population ages (undergraduate vs. middle grade).

3.3.2 Student Interest. Using the Interest and Enjoyment subscale
of the IMI as described in Sections 3.2.1 and 3.2.2, we encoded
student interest for both C������ I����� – S������B���� and
C������ I����� – R���������. Similar to the median split process
described for student knowledge, we split students into low (0) and
high (1) interest groups based on these scores. For C������ I�����
– S������B����, the low group was de�ned as a score of below
4.86 (34 students), and the high group was de�ned as a score above
or equal to 4.86 (27 students). For C������ I����� – R���������,
the low group was de�ned as a score of below 5.29 (56 students),
and the high group was de�ned as a score above or equal to 5.29
(62 students).

3.3.3 Facial Expression Recognition and Feature Representation. We
captured student facial expressions using the FACET facial expres-
sion toolkit [15], which extracts facial features for each video frame

that correspond to the Facial Action Coding System (FACS) [7].
Each facial action unit (AU) was processed to derive a total dura-
tion each student spent exhibiting the given AU. In addition to the
duration of each AU activation, we also computed the total num-
ber of times each AU was exhibited by each student. To compute
the total number of AU occurrences, we counted the number of
times each AU surpassed an intensity threshold of 0.5 for longer
than a duration threshold of 0.5 seconds. This approach reduces
the e�ect of noise in the sensor measurements [8]. There were 40
total features extracted from students’ facial expression: a total
duration and the total event count for each of the 20 available AUs.
As this is an early prediction setting, each feature was computed
cumulatively over time to enable model predictions at incremental
moments in student gameplay. We describe this process in Section
5.

3.3.4 Gaze-Based Entity Tracking and Eye Tracking Feature Repre-
sentation. Student eye gaze in C������ I����� – S������B����
was captured with the SMI RED 250 eye tracker using a 9-point
calibration. During interactions with the game, the software re-
sponsible for logging student eye gaze data records �xations on
each possible type of in-game object. In the game, there are 145
unique in-game objects. We used the �xations on each individual
game object. In processing these �xations, we calculated the total
duration that each student spent �xating upon each of the objects.
We also computed the total number of �xation events (250 millisec-
onds or longer), a threshold used based on prior research on eye
�xations during reading [40], for each student on each game object.
Using both the counts and the �xation durations resulted in 290
total features for students’ eye gaze. Each feature was computed
cumulatively over time, enabling early prediction at incremental
moments in gameplay.

3.3.5 Reflective Writing Processing. In C������ I����� – R������
����, students’ written responses to the re�ection prompts were en-
coded using word embedding techniques. Speci�cally, we compared
two language models to embed each written re�ection response:
300-dimensional GloVe embeddings [34] and 1024-dimensional
ELMo embeddings [35]. A single embedding representation for
each student’s overall re�ections at the time of prediction was com-
puted to enable early prediction by averaging their mean re�ection
embeddings across their provided re�ections up until the current
time point. Each re�ection response embedding was calculated
by averaging word embeddings included in the response using a
language model.

3.3.6 Gameplay Features. Both the C������ I����� – S������
B���� and C������ I����� – R��������� datasets include game-
play data captured from students as they interact with the game
environment. We encoded students’ gameplay actions using several
components: milestone completion, action type, action arguments,
and action location. Speci�cally, each action is represented by a con-
catenation of one-hot encoded vectors for each action component
at each time point. We then sum the sequence of these concate-
nated one-hot vectors up to the point of prediction. This yielded
a count-based feature vector with 130 features, where the counts
identify how many times each type of action and the corresponding
components occurred in the sequence. Each feature vector also
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included the current time (seconds) elapsed from the start of the
game.

4 PREDICTIVE STUDENT MODELS OF
INTEREST AND KNOWLEDGE

To investigate the uni�ed student modeling framework, we built
predictive models of student knowledge and interest that were
informed by the data described above. Using the available multi-
modal data from each dataset, we classi�ed students into low and
high groups for their post-test and interest scores. In the C������
I����� – S������B���� dataset, Pearson correlations indicated
non-signi�cant linear relationships between the post-test and in-
terest scores (r=0.16, p=0.23). However, Pearson correlations did
indicate signi�cant linear relationships between post-test and in-
terest scores in the C������ I����� – R��������� dataset (r=0.23,
p<0.05). We compared di�erent sets of multimodal predictive classi-
�ers trained on the data from students who learned with C������
I����� – S������B���� (n=61) and C������ I����� – R���������
(n=118) separately. For C������ I����� – S������B����, the total
number of features includes 40 related to facial expression, 290
related to eye gaze, and 130 related to gameplay, for a total of 460
possible multimodal features per student. For C������ I����� – R��
��������, the total number of features includes either 300 (GloVe)
or 1,024 (ELMo) related to the re�ection text and 130 related to
gameplay, resulting in a total of 430 or 1,154 possible multimodal
features per student. In addition to the multimodal features, each
model also used data from the 17 questions from the pre-test. The
training of each predictive model for each dataset was conducted
using 5-fold cross-validation at the student-level, allowing all 61 or
118 students to be either used for training or testing. This means
that 80% and 20% of the students were in the training and testing
sets for each fold, respectively, and there was no overlap of students
in each training and testing set to avoid data leakage.

To account for the high number of possible features in themodels,
we performed feature reduction with principal component analysis
(PCA) in several ways to reduce the chance of over�tting. Within
each cross-validation fold, we performed one of three possible PCA
reductions: no PCA performed (i.e., no feature reduction), PCA per-
formed on each input modality separately, and PCA on the input
modalities jointly. When PCA was performed, the dimensions were
reduced to either 32 or 64 considering our dataset size and �ndings
from previous research that demonstrated high predictive perfor-
mance with PCA applied to ELMo embeddings [29]. Speci�cally, to
determine the optimal method of applying PCA across the multi-
modal dataset, we use two variations of feature-level data fusion.
The �rst approach is performed by concatenating all features from
each modality, and then performing PCA on this set to generate a
�nal set of either 32 or 64 total features. In the second approach,
PCA was performed on each modality’s feature set separately, gen-
erating sets of 32 or 64 features per modality, which were then
concatenated prior to training the student model. These varying
data fusion techniques allow for the complex inter- and intra-modal
relationships to be leveraged during model training and prediction,
and they can be generalized further. When reporting the results
of the multimodal predictive models for a speci�c combination of
modalities, we will report the results from the data fusion technique

(i.e., the PCA reduction details) that performed the best rather than
reporting the performance of each possible data fusion technique
due to the space constraints.

Student performance on the post-test and their interest score
were predicted at two-minute intervals of gameplay as well as at
the conclusion of the game. For each interval, we used a cumu-
lative representation of the student data up to that point. In this
analysis, we used the random forest (RF) classi�cation algorithm,
which supports both single-task learning and multi-task learning
[33], for each predictive model. That is, we train an individual RF
classi�er to predict either post-test performance or interest, and
we also use an individual RF classi�er to predict both outcome
variables. This allowed for easier comparison between the modal-
ity combinations and processing conditions using a single set of
classi�cation algorithms. The input features to each classi�er were
the pre-test items, the cumulative representations of the combi-
nation of modalities (i.e., a combination of facial expressions, eye
gaze, gameplay, and re�ection text depending on the experimental
setting and modality availability), and elapsed game time. Each of
the cumulative multimodal features were scaled �rst by elapsed
game time (i.e., each feature sum was divided by the number of
seconds elapsed at that time point). All features were then standard-
ized within the 5-fold cross-validation, and then hyperparameter
tuning of the classi�ers occurred on an additional internal 3-fold
cross-validation. The internal cross-validation split the training
set into a training and validation set, which were iteratively used
to compare a set range of model hyperparameters, including the
minimum samples required per leaf node and the total number of
trees.

4.1 Transfer Learning
To evaluate the e�ectiveness of transferring information from one
source dataset to another target dataset in the multimodal predic-
tive models, we constructed an unsupervised model of the shared
modality between datasets: gameplay. Because both the datasets
consisted of student gameplay with the same feature representa-
tion, it is possible to construct a model that learns a new, reduced
feature set for this modality and apply it to a new target dataset.
This idea is similar to the use of pre-trained language models (e.g.,
ELMo, BERT, T5), where we apply the pre-trained language model
to domain-speci�c text and obtain a distributed vector represen-
tation of that text. Intuitively, a larger source dataset of gameplay
data will allow for a more expressive unsupervised model to be
trained, and this model can then be applied to new target dataset.
We used a standard autoencoder, a type of neural network where
the model attempts to reconstruct the input from a learned latent
representation, to be used as the unsupervised learning method. In
this analysis, we compared the use of an autoencoder on the game-
play data from each dataset separately. Speci�cally, we compared
three conditions: (1) training an autoencoder from “scratch” on the
current target dataset without leveraging any information from
another source dataset (i.e., no transfer), (2) applying an autoen-
coder that was �rst pre-trained on the source dataset’s gameplay
data (similar to applying a pre-trained language model to a new
text corpus), and (3) �ne-tuning an autoencoder that was �rst pre-
trained on the source dataset’s gameplay data on the current target
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dataset’s gameplay data (similar to �ne-tuning a language model
on a new domain-speci�c text corpus).

For Condition 1 (no transfer), the autoencoder is trained on the
training data from the current target dataset. The encoder com-
ponent of this autoencoder is then used to encode both the train-
ing and test data from the target dataset. Then, the RF classi�er
is trained on this encoded representation and the features from
any additional modalities. For Condition 2 (transfer without �ne-
tuning), the autoencoder is trained on all the gameplay data from
the source dataset, and the trained encoder component is used to
encode both the training and testing gameplay data from the target
dataset. The RF classi�er is then trained on this representation as it
was with Condition 1. For Condition 3 (transfer with �ne-tuning),
the autoencoder is trained on all the gameplay data from the source
dataset, and then the autoencoder is further trained on the training
data from the target dataset. The �ne-tuned encoder is now used to
encode both the training and testing gameplay data from the target
dataset, and the RF classi�er is trained and evaluated on this en-
coded data. Each autoencoder was constructed with a total of three
hidden layers of dimensions 64, 32, and 64, meaning the innermost
layer learned has a dimensionality of 32. The models were opti-
mized with Adam [20], and training was terminated through early
stopping with a patience of 5 or a maximum of 100 epochs. For each
transfer learning experiment, we did not use any other feature re-
duction techniques in addition to the autoencoder (i.e., no PCA was
performed in addition to the autoencoders for any modality). This
was done to focus the comparisons on the e�ect of transfer learning.
This work explores transfer learning across di�erent versions of the
same game-based learning environment. The student populations
and types of data channels di�ered, making this approach fall under
the framing of covariate shift and domain adaptation, both of which
are included in the transfer learning paradigm [32].

5 RESULTS
To examine how well each combination of students’ multimodal
data classi�es student post-test performance and interest in ei-
ther a single-task or multi-task setting, we report the �ve-fold
cross-validation results for each early prediction model. The critical
metrics for this work include a metric from both early prediction
(standardized convergence point, SCP) [27] and a standard clas-
si�cation metric (F1 score). SCP measures how early prediction
models can consistently make accurate predictions while penaliz-
ing non-converged sequences (i.e., sequences whose last instance
predictions are incorrect). For each model, we report the early pre-
diction metrics of the best-performing model in terms of SCP across
all possible data fusion and PCA reduction techniques and similarly
report the classi�cation results of the model with the highest F1
score across all possible data fusion techniques. Since SCP aims
to identify model performance at early stages in the prediction
sequence, lower values are better. F1 score aims to summarize how
well the model is predicting the high groups (i.e., 1) by taking the
harmonic mean of the precision and recall.

5.1 C������ I����� – S������B����
We �rst report the performance of the predictive models with dif-
ferent combinations of modalities for classifying student post-test

score performance and interest for C������ I����� – S������
B���� in Tables 1 and 2, respectively. For each table, both the
single-task performance and the multi-task performance are shown.
For each modality con�guration, we report the best performance
as determined by SCP and F1 score, and the statistical signi�cance
for the metrics are based on these. The best performing data fu-
sion techniques and PCA reduction dimensions varied across all
modality con�gurations, so we do not report these aspects of the
best performing modality con�gurations. Statistical tests were con-
ducted to compare models to the gameplay-only baseline and to
compare multi-task (MTL) and single-task (STL) models. We used
the statistical tests to compare the best performing MTL models to
the best performing STL models to reduce the overall number of
statistical tests. All statistical tests were conducted using the one-
sided Wilcoxon signed-rank test between the performance of the
models in each cross-validation fold. This test is a non-parametric
test because the results from each fold cannot be assumed to be
normally distributed.

5.2 C������ I����� – R���������
We now report the performance of the predictive models with
di�erent combinations ofmodalities for classifying student post-test
score performance and interest for C������ I����� – R���������
in Tables 3 and 4, respectively. We again report both the single-task
performance and the multi-task performance. For each modality
con�guration, we report the best performance as determined by
SCP and F1 score, and the statistical signi�cance for the metrics
are based on these. The best performing data fusion techniques
and PCA reduction dimensions again varied across all modality
con�gurations.

5.3 Transfer Learning for C������ I����� –
S������B����

Next, we report the results of transfer learning for C������ I�����
– S������B����. Tables 5 and 6 illustrate the performance for post-
test score and interest, respectively, but we now include instances
where an autoencoder was used on the gameplaymodality. For a fair
comparison, we conducted transfer learning only on the modality
combinations that include the gameplay modality. The non-transfer
(NT) condition is compared to the transfer conditions of pre-trained
(PT) and �ne-tuned (FT).

5.4 Transfer Learning for C������ I����� –
R���������

Next, we report the results of transfer learning for C������ I�����
– R���������. Tables 7 and 8 illustrate the performance for post-
test score and interest, respectively, but we now include instances
where an autoencoder was used on the gameplaymodality. For a fair
comparison, we conducted transfer learning only on the modality
combinations that include the gameplay modality.

6 DISCUSSION
We investigated the e�ectiveness of combining multimodal, multi-
task, and early prediction components into a single, uni�ed student
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Table 1: Post-test score prediction results for C������ I����� – S������B����. * indicates the model outperforms the gameplay-
only model (p < 0.05), and ^ indicates the MTL model outperforms the best STL model (p < 0.05). g, e, and f represent gameplay,
eye gaze, and facial expressions, respectively. Bolded models outperform baselines in terms of SCP or F1 score.

Single-Task

Modalities Maj. Class {g} {e} {f} {g, e} {e, f} {g, f} {g, e, f}
SCP 0.531 0.554 0.503* 0.593 0.541 0.655 0.507* 0.590
F1 0.694* 0.628 0.682* 0.557 0.659 0.609 0.715* 0.598

Multi-Task

Modalities Maj. Class {g} {e} {f} {g, e} {e, f} {g, f} {g, e, f}
SCP 0.531 0.557 0.461* 0.556 0.491* 0.572 0.500* 0.583
F1 0.694* 0.647 0.699* 0.620 0.662 0.614 0.693* 0.614

Table 2: Interest prediction results for C������ I����� – S������B����. * indicates the model outperforms the gameplay-only
model (p < 0.05), and ^ indicates the MTL model outperforms the best STL model (p < 0.05). g, e, and f represent gameplay, eye
gaze, and facial expressions, respectively. Bolded models outperform baselines in terms of SCP or F1 score.

Single-Task

Modalities Maj. Class {g} {e} {f} {g, e} {e, f} {g, f} {g, e, f}
SCP 0.579 0.600 0.698 0.593 0.556* 0.595 0.554* 0.552*
F1 0.000 0.603 0.573 0.636 0.717* 0.636 0.702* 0.717*

Multi-Task

Modalities Maj. Class {g} {e} {f} {g, e} {e, f} {g, f} {g, e, f}
SCP 0.579 0.575 0.714 0.551 0.514* 0.580 0.514* 0.473*
F1 0.000 0.607 0.542 0.632 0.692* 0.630 0.698* 0.769*

Table 3: Post-test score prediction results for C������ I����� – R���������. * indicates the model outperforms the gameplay-only
model (p < 0.05), and ^ indicates the MTL model outperforms the best STL model (p < 0.05). g and t represent gameplay and
re�ection text, respectively. Bolded models outperform baselines in terms of SCP or F1 score.

Single-Task

Modalities Maj. Class {g} {t} {g, t}
SCP 0.474 0.525 0.438* 0.422*
F1 0.709 0.681 0.756* 0.726*

Multi-Task

Modalities Maj. Class {g} {t} {g, t}
SCP 0.474 0.524 0.394* 0.428*
F1 0.709 0.688 0.740* 0.749*

modeling framework. The goal of the framework is to classify stu-
dents’ post-test score performance and interest in the C������
I����� game-based learning environment. Using available multi-
modal data streams from the datasets, we investigated how e�ec-
tively di�erent combinations of modalities performed in classi�ca-
tion models of the two target variables, both in a single-task and
multi-task setting. Additionally, we evaluated the ability of each of
these models to make accurate predictions at early points within
students’ gameplay. The results indicated that multimodal data can
accurately predict both students’ post-test scores and interest. Ad-
ditionally, multi-task models were able to improve results in many

cases when predicting student interest as compared to single-task
models but did not markedly improve performance when predicting
post-test scores. Transfer learning was able to improve results in
cases where a larger amount of data was available in the source
dataset and in cases where fewer modalities were available overall.

6.1 Performance of Multimodal Models of
Post-Test Scores and Interest

For both predicting post-test scores and interest, we evaluated base-
line models that only incorporated student gameplay data. The
results in Table 1 for C������ I����� – S������B���� indicate



LAK 2023, March 13–17, 2023, Arlington, TX, USA Andrew Emerson et al.

Table 4: Interest prediction results for C������ I����� – R���������. * indicates the model outperforms the gameplay-only model
(p < 0.05), and ^ indicates the MTL model outperforms the best STL model (p < 0.05). g and t represent gameplay and re�ection
text, respectively. Bolded models outperform baselines in terms of SCP or F1 score.

Single-Task

Modalities Maj. Class {g} {t} {g, t}
SCP 0.596 0.669 0.564* 0.577*
F1 0.673* 0.559 0.627* 0.634*

Multi-Task

Modalities Maj. Class {g} {t} {g, t}
SCP 0.596 0.658 0.510* 0.507*
F1 0.673* 0.587 0.649* 0.695*

Table 5: Post-test score prediction results with transfer for C������ I����� – S������B����. * indicates the transfer learning
model outperforms the non-transfer (NT) model (p < 0.05), and ^ indicates the MTL model outperforms the best STL model (p <
0.05). g, e, and f represent gameplay, eye gaze, and facial expressions, respectively. Bolded models outperform baselines in
terms of SCP or F1 score.

Single-Task

Modalities
Transfer

{g}
FT

{g}
PT

{g}
NT

{g,e}
FT

{g,e}
PT

{g,e}
NT

{g,f}
FT

{g,f}
PT

{g,f}
NT

{g,e,f}
FT

{g,e,f}
PT

{g,e,f}
NT

SCP 0.568* 0.597 0.608 0.702 0.651* 0.715 0.529* 0.540 0.584 0.663 0.659 0.669
F1 0.620* 0.607 0.567 0.619 0.648* 0.588 0.663* 0.540 0.592 0.575 0.587 0.577

Multi-Task

Modalities
Transfer

{g}
FT

{g}
PT

{g}
NT

{g,e}
FT

{g,e}
PT

{g,e}
NT

{g,f}
FT

{g,f}
PT

{g,f}
NT

{g,e,f}
FT

{g,e,f}
PT

{g,e,f}
NT

SCP 0.565* 0.551* 0.605 0.575* 0.622 0.656 0.527* 0.529* 0.585 0.649 0.647 0.630
F1 0.669* 0.630 0.623 0.643* 0.628 0.603 0.664* 0.666* 0.598 0.611 0.586 0.615

Table 6: Interest prediction results with transfer for C������ I����� – S������B����. * indicates the transfer learning model
outperforms the non-transfer (NT) model (p < 0.05), and ^ indicates the MTL model outperforms the best STL model (p < 0.05).
g, e, and f represent gameplay, eye gaze, and facial expressions, respectively. Bolded models outperform baselines in terms of
SCP or F1 score.

Single-Task

Modalities
Transfer

{g}
FT

{g}
PT

{g}
NT

{g,e}
FT

{g,e}
PT

{g,e}
NT

{g,f}
FT

{g,f}
PT

{g,f}
NT

{g,e,f}
FT

{g,e,f}
PT

{g,e,f}
NT

SCP 0.630* 0.676 0.698 0.768 0.712* 0.783 0.679 0.611* 0.673 0.669 0.616 0.643
F1 0.516 0.511 0.520 0.599* 0.542 0.536 0.563 0.608* 0.554 0.631 0.641 0.656

Multi-Task

Modalities
Transfer

{g}
FT

{g}
PT

{g}
NT

{g,e}
FT

{g,e}
PT

{g,e}
NT

{g,f}
FT

{g,f}
PT

{g,f}
NT

{g,e,f}
FT

{g,e,f}
PT

{g,e,f}
NT

SCP 0.589*^ 0.697 0.709 0.640* 0.679* 0.741 0.667 0.599* 0.653 0.673 0.700 0.646
F1 0.573* 0.501 0.466 0.641*^ 0.637 0.553 0.564 0.593 0.566 0.614 0.612 0.619

that in the single-task setting, both the unimodal model of eye
gaze-only and the multimodal model of gameplay and facial ex-
pressions outperformed this gameplay-only baseline in both the
SCP and F1 score metrics. It is notable that the combination of all
three available modalities may be inhibitive for predicting post-test

scores. For predicting interest, we found that several di�erent com-
binations of modalities outperformed the gameplay-only baseline
(Table 2). Speci�cally, the gameplay plus eye gaze, gameplay plus
facial expressions, and gameplay plus eye gaze and facial expres-
sions combinations all outperformed the gameplay-only single-task
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Table 7: Post-test score prediction results with transfer for C������ I����� – R���������. * indicates the transfer learning model
outperforms the non-transfer (NT) model (p < 0.05), and ^ indicates the MTL model outperforms the best STL model (p < 0.05).
g and t represent gameplay and re�ection text, respectively. Bolded models outperform baselines in terms of SCP or F1 score.

Single-Task

Modalities
Transfer

{g}
FT

{g}
PT

{g}
NT

{g,t}
FT

{g,t}
PT

{g,t}
NT

SCP 0.473 0.477 0.476 0.423* 0.464 0.473
F1 0.667 0.679 0.673 0.752* 0.734 0.700

Multi-Task

Modalities
Transfer

{g}
FT

{g}
PT

{g}
NT

{g,t}
FT

{g,t}
PT

{g,t}
NT

SCP 0.451 0.457 0.479 0.504* 0.501* 0.553
F1 0.677 0.680 0.670 0.731* 0.731* 0.675

Table 8: Interest prediction results with transfer for C������ I����� – R���������. * indicates the transfer learning model
outperforms the non-transfer (NT) model (p < 0.05), and ^ indicates the MTL model outperforms the best STL model (p < 0.05).
g and t represent gameplay and re�ection text, respectively. Bolded models outperform baselines in terms of SCP or F1 score.

Single-Task

Modalities
Transfer

{g}
FT

{g}
PT

{g}
NT

{g,t}
FT

{g,t}
PT

{g,t}
NT

SCP 0.682 0.690 0.671 0.620* 0.613* 0.686
F1 0.508 0.520 0.550 0.593* 0.576* 0.522

Multi-Task

Modalities
Transfer

{g}
FT

{g}
PT

{g}
NT

{g,t}
FT

{g,t}
PT

{g,t}
NT

SCP 0.699 0.687 0.667 0.579* 0.590* 0.724
F1 0.491 0.505 0.500 0.624* 0.613* 0.474

model in terms of both SCP and F1 score. For C������ I����� –
R���������, the �ndings in Tables 3 and 4 re�ect the same notion
that by incorporating another modality in addition to gameplay,
the early prediction models are better able to predict both post-test
scores and interest, respectively. For this dataset, by adding re�ec-
tion text as an additional modality to gameplay, the models are
statistically better in terms of both SCP and F1 score.

We observed that re�ection text alone in an early prediction
model outperforms gameplay for predicting both post-test score
performance and interest. It is possible that the models are bet-
ter able to use direct feedback from students (e.g., topics they are
struggling with) about their learning process (rather than students’
in-game actions) as indicators of their knowledge and interest in the
game. A game-based learning environment equipped with informa-
tion about both students’ gameplay and re�ection text appears to
be capable of making accurate predictions about students’ post-test
scores and interest. Additionally, we observed that the di�erence
in performance between the post-test score models and interest
models is much greater in C������ I����� – R��������� than it
is for C������ I����� – S������B����. Speci�cally, in C������
I����� – R���������, the models of student post-test scores are

slightly better than the models of student post-test scores in C����
��� I����� – S������B����, and the opposite relationship is true
for models of student interest. The key di�erences between the
two datasets could in�uence this disparity. It is possible that in the
case of predicting post-test performance, using student re�ection
text is more predictive than either eye gaze or facial expressions,
when added to gameplay data. This is somewhat intuitive, because
students are asked to re�ect on their learning process and are di-
rectly providing information about what they know. This may not
be the case for interest, however. Student facial expressions and eye
gaze may be better at capturing a�ective states such as boredom or
frustration, which may be more related to their interest levels in
the game when compared to their re�ection text.

6.2 Performance of Multi-Task Models of
Post-Test Scores and Interest

For both predicting post-test scores and interest, we compared the
performance of multi-task models of student post-test score and
interest to their single-task counterparts as baselines. The results
in Tables 1 and 2 for C������ I����� – S������B���� indicate that
multi-task learning does not improve predictive performance signif-
icantly for post-test score prediction, but it does help signi�cantly
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for interest prediction. In general, the same combination of modali-
ties is predictive in the MTL setting compared to the STL setting for
the respective target variables. However, the results indicate that
predicting interest with MTL yields more improvement over STL
models due to the joint prediction of post-test scores and interest.
This �nding highlights the connection between post-test scores
and student interest in game-based learning, which aligns with pre-
vious theory [42]. For C������ I����� – R���������, the �ndings
in Tables 3 and 4 are also in support of multi-task models of student
interest but not so for post-test scores. Speci�cally, there are no
statistically signi�cant di�erences between the best performing
STL and MTL models for predicting post-test score performance in
this dataset, but there are statistically signi�cant di�erences in the
models of student interest. This �nding from both datasets could
indicate that by also forecasting what a student knows, the models
are better able to detect how interested they are in the game itself.
This could be because students are more likely to be interested in
their experience if they are learning about the subject matter. These
�ndings have broad implications for predictive student modeling
in game-based learning environments. While MTL was more useful
in enhancing the predictions of student interest, prior work has
found that as the number of tasks increases, predictive performance
also increases for these tasks [11]. It is also possible to represent
student knowledge by the student’s mastery of individual concepts,
such as by the student’s predicted responses to individual post-test
questions. This also would enable adaptive feedback mechanisms
to pinpoint which speci�c areas the predictive model thinks the
student needs support.

6.3 Performance of Transferred Models of
Post-Test Scores and Interest

A �nal goal of this work was to investigate how the uni�ed mul-
timodal, multi-task, early prediction framework can be leveraged
from one domain (i.e., the source dataset) and applied to another (i.e.,
the target dataset). To this end, we used the input information that
was shared between the two domains: gameplay data. Because both
datasets share the same core game-based learning environment,
the gameplay logs from each dataset are very similar. To leverage
information between the two datasets, we trained an autoencoder
on the gameplay from a source dataset and applied the pre-trained
model to the target dataset as a way of applying a feature reduction
that had been previously trained. We compared the use of no trans-
fer (NT) to transfer with two variations: 1) applying the pre-trained
gameplay model to the current dataset’s gameplay data as-is (PT),
and 2) �ne-tuning the pre-trained gameplay model to the current
dataset’s gameplay data in its training set (FT). Tables 5 and 6 il-
lustrate the performance of these conditions for C������ I����� –
S������B����. The relationships between multimodal data versus
unimodal data and MTL versus STL remain the same, but we note
that by transferring the representation of the gameplaymodality, we
see a statistically signi�cant increase in the predictive performance
for both post-test scores and interest in many cases. In particular,
we notice the biggest increase in performance when there are fewer
modalities overall, meaning that gameplay is relied on more heavily
for the prediction. For the results in these two tables for both trans-
fer cases (PT and FT), the autoencoders were �rst trained on the

gameplay data from C������ I����� – R��������� (n=118), which
is a dataset of nearly double the size as C������ I����� – S������
B���� (n=61). This increase in performance in this direction is a
common characteristic of unsupervised machine learning models
that were �rst trained on larger dataset. This is often seen in the
�eld of natural language processing, where language models (e.g.,
ELMo, BERT, T5) are �rst trained on extremely large text corpora.
The performance of the full set of modalities does not improve in
the transferred setting, indicating that the models are more heavily
relying on information from the sensor-based modalities compared
to the gameplay modality. It is also noteworthy that both transfer
conditions outperform the non-transfer condition at various points,
with no clear best approach when multiple modalities are used.
However, when gameplay is the only modality present, a transfer
approach that involves �ne-tuning appears to be superior in terms
of the SCP and F1 score metrics. Tables 7 and 8 illustrate the perfor-
mance of the transfer learning experiments for C������ I����� –
R���������. This means that for both transfer conditions (PT and
FT), the autoencoders were trained �rst on gameplay data from
C������ I����� – S������B���� and either applied as-is or �ne-
tuned on the new gameplay data, respectively. While it appears that
models that transfer the gameplay representation outperform the
non-transfer models for both post-test score and interest prediction
for the multimodal combinations, we note that the gameplay-only
models do not bene�t from transfer. This �nding is supported by
the earlier point concerning the sizes of the two datasets. The C����
��� I����� – S������B���� dataset is much smaller, so a model
�rst trained on this dataset is less likely to boost performance of
a model that is trained and evaluated on a much larger dataset. It
is notable, however, that the models incorporating both gameplay
and re�ection text are improved by leveraging gameplay data from
the C������ I����� – S������B���� dataset. This is likely due
to the models more heavily relying on text for these predictive
tasks and bene�ting from the richness of the previous dataset. As a
general point, the transfer appears to be much more e�ective when
�rst pre-training on the C������ I����� – R��������� dataset and
applying the gameplay representation from the autoencoder to the
C������ I����� – S������B���� dataset compared to the oppo-
site direction. The transfer results highlight the promise of using
similar data that was collected from a previous version of the game-
based learning environment. More broadly, when there are limited
modalities available, it is critical to leverage information from other
source datasets to improve predictive model performance.

7 CONCLUSION
Predictive student models enable game-based learning environ-
ments to adapt to individual students’ needs in real-time. Advances
in sensor-based technologies and natural language processing intro-
duce the opportunity to leverage multimodal data channels during
game-based learning. We developed a uni�ed student modeling
framework consisting of multimodal learning analytics, multi-task
learning, transfer learning, and early prediction. When combined,
the uni�ed framework was evaluated using two datasets collected
from student interactions with the C������ I����� game-based
learning environment. Approaches to improve the predictive perfor-
mance of the framework by transferring the trained model from one
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dataset to another were also investigated. The framework was eval-
uated by early prediction convergence metrics as well as standard
performance metrics on all predictions. Evaluations demonstrated
that using an autoencoder to encode the gameplay data from one
game-based learning dataset and applying the encoding to the
other dataset improved predictive model results for predicting both
post-test scores and interest. Multi-task learning was able to im-
prove predictive results for interest, but not post-test scores. These
�ndings, and the overall uni�ed framework, advance the �eld of
predictive student modeling by creating a uni�ed framework to
drive adaptive and personalized learning.

The �ndings presented here suggest several promising direc-
tions for future work. First, exploring more expressive and e�ective
feature representations for each modality will be important. For
all modalities, we used a static feature representation to both syn-
chronize each input source and inspect the relationships between
each modality with both student post-test performance and interest
after game-based learning. A promising alternative could be a tem-
poral representation that incorporates the dynamic nature of the
data. A sequential model that leverages this representation could
achieve more accurate, �ne-grained early predictions of student
post-test performance and interest. Second, it will be critical to in-
vestigate other modeling techniques (e.g., deep learning) to further
improve predictions. With the insight of which features perform
well in both the predictive tasks, more sophisticated modeling tech-
niques may be able to achieve even higher accuracy. More advanced
transfer learning approaches (e.g., adversarial-based domain adap-
tation) could further improve results. A �nal promising direction
is to investigate how multimodal models can be incorporated into
game-based learning environments to support real-time adaptive
sca�olding. This will set the stage for empirically assessing the e�-
cacy of early predictive models that integrate students’ multimodal
data to improve student learning outcomes.
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