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Abstract—Inability to regulate affective states can impact one’s capacity to engage in higher-order thinking like scientific
reasoning with game-based learning environments. Many efforts have been made to build affect-aware systems to mitigate the
potentially detrimental effects of negative affect. Yet, gaps in research exist since accurately capturing and modeling affect as a
state that changes dynamically over time is methodologically and analytically challenging. In this paper, we calculated
multilevel mixed effects growth models to assess whether seventy-eight participants’ (n = 78) time engaging in scientific
reasoning (via logfiles and eye gaze) were related to time facially expressing confused, frustrated, and neutral states (via facial
recognition software) during game-based learning with Crystal Island. The fitted model estimated significant positive relations
between the time learners facially expressed confusion, frustration, and neutral states and time engaging in scientific-reasoning
actions. The time individual learners facially expressed frustrated, confused, and neutral states explained a significant amount
of variation in time engaging in scientific reasoning. Our finding emphasize that individual differences and agency may play a
important role on relations between affective states, their dynamics, and higher-order cognition during game-based learning.
Designing affect-aware game-based learning environments that track the dynamics within individual learners’ affective states
may best support cognition.

Index Terms—Game-based learning environments, multimodal data, cognitive trends, affective dynamics

Ç

1 INTRODUCTION

AFFECT is a feel, emotion, ormood represented by cognitive
structures in themind that provide information about the

world, compelling us to take action and make decisions [1],
[2]. Across scientific communities, significant efforts are being
made to build intelligent systems capable of automatically
detecting and mitigating harmful affective states [3], [4], [5].
For example, imagine affect-aware systems capable of sup-
porting learners in regulating confusion while scientifically

reasoning during game-based learning. However, progress is
slow due to a heavy reliance on data-driven techniques that
often ignore the cognitive basis affective states [6]. In this
study, we addressed this challenge by adopting a perspective
in cognitive-affective theory of learning that explains relations
between affect and cognition with emerging technologies
such as game-based learning environments [7].We converged
multiple channels of time series data including facial expres-
sions of emotions, eye gaze, and learner-system interactions
to examine relationships between affective dynamics and
trends in cognition (e.g., scientific reasoning) during game-
based learning. The findings of this work suggest directions
for designing affect-aware systems to not only track andmon-
itor how long affective states persist, but also emphasize how
the system can best intervene when affect suggests detrimen-
tal relations with cognitive abilities (e.g., inability to reason
due to negative affect) based on individual characteristics
(e.g., lack of prior knowledge) during game-based learning.

2 GAME-BASED LEARNING ENVIRONMENTS

Game-based learning environments are designed with game
elements to enhance cognition by fostering affective experien-
ces that lead to engagement, and thus are key research tools
for studying relations between affective dynamics and cogni-
tion. A systematic review by [8] found that out of 149 studies,
game-based learning environments not only influenced per-
ceived control and value in the learning experience, but that
learners also reported more emotional engagement during
learning compared to traditional education settings [7]. Sev-
eral other meta-analyses support the same conclusion: game-
based learning environments are useful tools to enhance
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cognitive skills due to their affect-inducing features compared
to other education settings like classrooms [9], [10].

A game-based learning environment called Crystal
Island, for example, fosters affect and engagement by
manipulating level of agency (i.e., restricted versus total
autonomy) afforded to learners in how they can interact
with game features. Studies empirically support that the
game elements built into Crystal Island foster cognitive
processing that allow learners to reason scientifically
[11]. In other words, Crystal Island presents realistic sce-
narios with clearly defined goals linked to structured
learning activities. Learners with restricted agency must
follow a pre-set sequence of learning activities, while
learners in the total agency condition are free to define
their own sequence of learning activities. Studies empiri-
cally support that manipulating agency in Crystal Island
fosters more cognitive processing, engaging learners in
scientific reasoning and enhancing their learning of con-
tent [11].

However, these research findings present key challenges
as most of the studies failed to account for the cognitive
basis of affect and captured affect (e.g., engagement) using
self-report data or observations. While these methods are
valid, we argue that in order to measure affect, researchers
also need continuous streams of information on affect to
capture its stability or change over time. Self-report data
and observations reveal affect at static intervals, potentially
missing information on affective dynamics and its relation
to cognition and learning with game-based learning envi-
ronments over time [6]. We argue that utilizing these meth-
ods fails to acknowledge the changing nature of affect,
ignoring critical theoretical assumptions. In this paper, we
addressed these issues by referring to the integrated model
of cognitive-affective learning with media (ICALM; [7]) and
utilizing continuous streams of facial expressions. We argue
this approach might offer more insight in to relations
between affective dynamics and cognition during game-
based learning.

We argue that Crystal Island is an ideal platform for
studying relations between affect and cognition guided
by ICALM because it was built with features that manip-
ulated the level of agency learners had, influencing their
affect and cognitive processing. For instance, one study
[12] examined the role of agency during learning with
Crystal Island and its impact on affect, motivation, and
learning outcomes. Results showed that learners with
restricted agency during game-based learning achieved
the highest learning gain compared to the total and no
agency conditions. They also found that learners in both
the no and total agency conditions expressed more frus-
tration and confused affective states during learning
activities compared to the restricted agency condition.
Although, challenges remain since the study aggregated
all instances of affect, missing how affect might have
changed or persisted over time and its relation to cogni-
tion across the agency conditions. We address these chal-
lenges in our study using time series data to analyze
longitudinal trends in affective states and its relation to
scientific reasoning across agency conditions during
game-based learning with Crystal Island.

3 INTEGRATED MODEL OF COGNITIVE-AFFECTIVE

LEARNING WITH MEDIA

ICALM assumes two components exist when learners cog-
nitively process information with emerging technologies:
(1) working memory and (2) long-term memory using two
channels–verbal and nonverbal [13]. Working memory is
responsible for processing and integrating new information
into long-term memory and has a very limited storage
capacity and duration (i.e., cognitive load [13]. Conversely,
long-term memory permanently stores information at an
unlimited capacity in memory, where this information can
bypass working memory if it is like other information
already stored in long-term memory using chunking mech-
anisms (i.e., prior knowledge). The ICALM framework also
explains that there is a third channel that moderates work-
ing memory while cognitively processing information into
long-term memory: affective states [14]. Affective states are
an umbrella term that describe feelings, moods, attitudes,
and emotions, that range from suffering to elation. Consist-
ing of multiple dimensions that include psychological, cog-
nitive, motivational, and physiological components , affect
leads to a pleasant or unpleasant subjective experience (i.e.,
positive or negative; valence [15]).

According to ICALM, cognitive processes are emerging
properties that result from interacting prior knowledge,
abilities, beliefs, affect, and motivation. As such, affect can-
not be decoupled from cognitive processes and it controls
whether goal-directed behaviors like scientific reasoning
are initiated and sustained during game-based learning,
either consciously or unconsciously [16]. While a learner is
constructing and organizing information via working mem-
ory, it may induce affect (e.g., frustration or confusion if
prior knowledge contradicts new information). Further,
studies utilizing ICALM suggests that positive affective
states (e.g., engagement) were related to better cognitive
capacity and information processing with game-based
learning environments [17].

However, relations are less clear for negative affective
states and cognitive processes. ICALM argues that the maxi-
mum cognitive capacity individual learners have impacts
their cognitive processing rather than the amount of cogni-
tive resources used. For instance, a task that is too easy or too
difficult will induce affective states, and depending on the
affective state and whether the learner can resolve it, deter-
mineswhether the learner’smotivation is undermined and if
cognitive processing is sustained. Since the learner is work-
ing beyond their current abilities, it is possible that they will
not devote enough cognitive resources to the learning activ-
ity. We discuss empirical results on affect and cognition with
emerging technologies in the following section.

3.1 Studying Affective States and Cognition
Studies find inconsistent relations between negative affect
and cognitive abilities with emerging technologies, where
sometimes negative affect is beneficial to cognitive abilities,
and other times it is harmful [15], [18], [19], [20]. We argue
that these mixed findings may result from a lack of theoreti-
cal integration and common methodologies for measuring
affect that involve administering self-report questionnaires
measuring affect before or after learning activities [21], and
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more recently in-situ using facial recognition and deep
learning approaches [22]. Other studies converge self-report
items with other data channels such as learner-system inter-
actions [2]. For instance, [2] administered self-report items
every 14 minutes during learning activities to capture the
valence, dynamics, and activation of affective states over
time [23]. They aligned the self-report data with log files
indicating cognitive strategy use (e.g., summarizing con-
tent) to gain insight into affect and its relation to cognitive
processing. Latent growth models showed that when nega-
tive activating affective states did not change over time, it
was related to cognitive strategy use. They also found that
relationships between changes in negative activating affec-
tive states and the quality of cognitive strategies predicted
the highest and lowest 30% learners. This finding suggested
that studying affective states defined by valence, activation,
and dynamics could provide deeper insight into its relation
with cognition and its association to learning outcomes
with emerging technologies.

However, progress is slow because affect is typically
measured at static intervals. For instance, a study by [24]
found that some self-reported negative affective states were
associated with more cognitive processing [20], [25], while
other negative affective states were associated with less.
When learners experienced confusion, it resulted in more
engagement with the content and thus more cognitive proc-
essing of information [24]. Another study by [26] found that
when learners experienced prolonged bored boredom, it
was associated with poor problem-solving performance
with emerging technologies; yet, when learners reported
frustration that changed across learning activities, it was
associated with better problem-solving performance [26].

A similar study by [27] examined whether, and to what
extent, changes in self-reported bored, frustrated, and con-
fused affective states captured using self-reports over the
course of learning activities impacted self-regulation and
performance [27]. They found that negative affective
changes impacted cognition. But, these relations were not
consistent across all negative affective states. Different rela-
tionships were present with cognition based on which and
when a particular affective state changed during the learn-
ing session. For example, increases in boredom were related
to lower performance, while no changes in confusion were
related to less learning. Another study examined affective
dynamics and their relationship to changes in self-regula-
tion and achievement using growth curve analysis [28].
Their models suggested more dynamic and complex rela-
tions between negative affective dynamics, self-regulation,
and achievement. Specifically, they found variability in how
individual’s negative affect changed over learning activities,
suggesting that individual differences may be moderating
relations between affect and cognition. This finding is
aligned with ICALM assumptions which suggest that the
maximum cognitive capacity is defined by the learners’
affect and individual characteristics. Although, it should be
emphasized that these studies utilized static interval of
affect using self-report items. Future research calls for con-
tinuous streams of data on affect to detect more granular
changes over time.

Observational protocols are another method for studying
affective states over time, particularly during classroom

learning (e.g., BROMP [25]) that provide more granularity
compared to self-report items. Within BROMP, for example,
learners are individually tagged in a pre-determined order
using a momentary time sampling method. Field observers
are trained on how to detect a representative sample of
behavior and affect based on body language, facial expres-
sions, and many other indicators of affective states. A study
by [29] leveraged BROMP observations to assess the transi-
tion of affective states and their relation to learning out-
comes. They found that the frequency of boredom patterns
was a powerful indicator of learners’ prior knowledge, yet
not an indicator of learning. At present, the most granular
method used today is collecting affect using facial recogni-
tion software. The Facial Action Coding System (FACS [30])
is a technique the offers a comprehensive approach for iden-
tifying all visible muscle movements on the face and are
being used in facial recognition software to automatically
detect affect [31]. A study by [32] used FACET, a facial rec-
ognition software built off FACS, to examine the role of neg-
ative affective states on self-regulation and problem solving
with Crystal Island. Specifically, they defined affect by con-
verging facial expressions with context (e.g., facial expres-
sions during specified events) during game-based learning.
Results showed that the context in which affect was facially
expressed (e.g., confusion following experimental testing
versus confusion while reading scientific articles) played a
role on cognitive processing [32]. However, limitations exist
as the facial expressions data were aggregated and averaged
over time, removing information on the stability or change
in affect over time. For instance, statistical models built to
handle time series data allow researchers to extract trends
in affective states to study if, when, and how affect changes
and its role on cognitive processing rather than as discrete
constructs (e.g., static or aggregated). To develop a better
understanding on relations between affective dynamics
and cognition, it is essential to leverage statistical models
and continuous time series data on affect and cognition
guided by a contemporary theoretical perspective and
empirical support [33].

Overall, we argue that to address the challenges in litera-
ture we need to move towards continuous and longitudinal
data on affective states and build statistical models that can
extract trends. In this paper, we focused on negative affec-
tive states, confusion and frustration, that are outlined in
the Affective Dynamics Model [24] because these affective
states indicate when a learner has reached an impasse in
their cognitive processing of information. If a learner
remains in a confused state, this model indicates that confu-
sion will transition into a frustrated state revealing that they
might be stuck and cannot cognitively process information
[2], [23], [24], [26], [27], [28], [29]. We emphasize that the
affective dynamics between confused and frustrated states
in relation to cognitive processing will provide insight into
if and when negative affect might be detrimental to cogni-
tive processing of information.

4 CURRENT STUDY

The objective of this article was to address significant gaps
in studies examining relationships between confusion, frus-
tration, and neutral affective dynamics, as well as time
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engaging in cognitive activities over the course of related
to scientific reasoning game-based learning with Crystal
Island across two experimental conditions (restricted versus
total agency groups). Through leveraging facial recognition
software, we captured the time learners’ facially expressed
frustrated and confused affective states during game-based
learning. We also collected time-stamped learner-system
interactions and converged these data with eye-gaze fixa-
tions as a measure of engagement with materials and gener-
ated latent variables of scientific reasoning. For example,
when learners interacted with game elements that might
suggest engaging in scientific reasoning (e.g., gathering
information through reading a book), we collected the
amount of time their eyes fixated on the material as well as
the time the log files indicated their interaction with the
game element. We guided our research using ICALM [7]
and built multilevel growth models to account for affective
dynamics [27], [28], [32]. Our research questions are out-
lined below:

4.1 To What Extent Does Time Scientifically
Reasoning During Game-Based Learning
Change Over Time

We hypothesize learners will demonstrate changes in the
time spent scientifically reasoning over the course of game-
based learning based on the ICALM and empirical literature
[7], [19]. Specifically, we hypothesize that time scientifically
reasoning changes over time

4.2 To What Extent are There Relationships
Between Time Expressing Frustration,
Confusion, and Neutral States and Time
Scientifically Reasoning During Game-Based
Learning, and do These Relationships Differ
Between Experimental Conditions?

We expect there will be relationships between time express-
ing confused, frustrated, and neutral states and time scien-
tifically reasoning based on previous empirical evidence
and ICALM [7], [17]. Specifically, we hypothesize that rela-
tionships will exist between confused, frustrated, and neu-
tral states as well as time scientifically reasoning, and that
these relationships will differ between restricted and total
agency groups during game-based learning. We do not state
a directional hypothesis since little to no research has been
done to investigate the role of agency on relationships
between affective dynamics and trends in scientific reason-
ing with game-based learning.

5 METHODS

5.1 Participants
A sample of 138 undergraduate students were recruited for
a large study across public institutions in North America to
solve a mystery with Crystal Island, a narrative-centered
game-based learning environment designed to foster (1)
higher-order thinking skills (e.g., scientific reasoning) and
(2) microbiology knowledge [12], [34]. Participants were
randomly assigned to 1 of 3 experimental conditions: 1)
restricted agency, 2) full agency, and 3) no agency. In this
paper, we only analyzed participants who were assigned to
the restricted or full agency conditions. Participants in these

conditions were included in the subsample based on several
criteria: (1) complete data for facial recognition, time-
stamped log files, and eye gaze data channels, and (2) non-
outlying data points. Specifically, we removed a total of 60
participants from the original sample if they had 1) incom-
plete data, 2) outliers via Grubb’s test [35], and/or 3) were
assigned to the no agency condition; see rationale in Sec-
tion 5.3). As such, a subsample of 78 undergraduates’ multi-
modal data (67% female; MAge ¼ 20:03, SD=1.71) were
analyzed in this manuscript.

Most of the sample identified as ‘White/Caucasian’
(69%) and reported average video game skills (32%) and
playing 0-2 hours per week (71%). None of the participants
reported learning with Crystal Island before the study. The
Institutional Review Board approved the study prior to
recruitment and data collection.

5.2 Crystal Island, a Game-Based Learning
Environment

Crystal Island was designed to enhance scientific-reason-
ing skills while learning about microbiology topics [12].
Upon starting the game, participants arrived via boat on a
virtual island where they were confronted by a researcher
who informed them that a mysterious pathogen had
infected the research team. Participants were instructed to
adopt the role of a Center for Disease Control agent and
solve the mystery by identifying (1) the pathogen, (2) its
transmission source, and (3) a treatment plan. For partici-
pants to solve the problem, they used resources and tools
built to foster scientific reasoning such that they could
gather information, generate hypotheses, and experimen-
tally test those hypotheses. Specifically, Crystal Island pro-
vided clues via non-player characters who explain the
patient symptoms or potential transmission sources. Sev-
eral books, research articles, and posters were integrated
throughout the game, covering information on a range of
pathogens like viruses and bacteria. Participants had
opportunities to gather food items in a backpack and test
them on a virtual scanner to evaluate if the food was con-
taminated with a pathogen. When participants gathered
enough evidence to make a final and accurate diagnosis,
they completed the game.

5.2.1 Tools for Solving the Problem

During game play, participants had access to a tool known
as the diagnosis worksheet, where they could record all
clues and hypotheses they had about the potential pathogen
and transmission source. The diagnosis worksheet was
divided into four different sections: (1) Patient’s Symptoms
to document the symptoms sick patients reported, (2) Test
Results to document the results obtained from scanning var-
ious food items, (3) Possible Explanations to document the
likelihood of a given pathogen as the illness impacting the
research team, and (4) Final Diagnosis to propose their
hypothesized solution for the suspected pathogen including
the pathogen, transmission source, and treatment. When
participants felt they had correctly identified the final diag-
nosis, they submitted their solution. If it was correct, the
participant successfully solved the problem, whereas if the
solution was incorrect, the participant was instructed to try
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for another solution. Other resources built to foster scientific
reasoning included disseminating information about micro-
biology via books, research articles, and posters throughout
various building in Crystal Island using text and diagrams.
After reading a book, participants had opportunities to
immediately assess their understanding of the information
using a tool called a concept matrix. The concept matrices
required participants to match information using a matrix,
such as matching treatment solutions (e.g., vaccine) with
different types of pathogens (e.g., anthrax). Participants
completed the concept matrix after reading a book and
were given a total of 3 attempts to fill it out correctly. Partic-
ipants also had opportunities to use a scanner to test their
hypotheses (i.e., test food items for contamination) and store
food items they hypothesized to be contaminated with a
pathogen in their backpack.

5.3 Experimental Design
Crystal Island was designed to foster scientific reasoning
using three experimental conditions that manipulated
agency. The control condition (i.e., total agency; n=62),
granted participants full control over their actions, while
the experimental condition (i.e., restricted agency, n=16)
required participants to follow a sequence of actions (e.g.,
reading books first) designed to foster scientific reasoning.
The no agency condition granted participants no control
over their actions while they watched in a playthrough of
the game. Since this group had no agency over how they
interacted with Crystal Island for this group, we did not
consider their data in our sample and analysis. The no
agency condition was designed to model what optimal sci-
entific reasoning looks like during game-based learning.
Upon starting the game, all participants began the tutorial
that introduced the narrative and how to interact with the
environment.

5.4 Procedure
Upon entering the research laboratory and obtaining writ-
ten consent, a researcher instructed the participant to sit in
front of a computer and they were randomly assigned to an
experimental condition. Participants were run through the
experiment individually to control for confounding varia-
bles. An electrodermal bracelet was placed around their
wrist and they were calibrated to an SMI EYERED 250 eye
tracker using a 9-pt calibration. Next, the participant was
instructed to view a grey screen with a neutral expression
for approximately 10 seconds to establish a baseline for the
facial recognition software. Once the participant completed
demographic and pre-test items, they began the tutorial
with Crystal Island. On average, it took participants in the
control condition 81 minutes (SD=23 minutes) to solve the
mystery, while it took 78 minutes (SD=16) for participants
in the experimental condition, or up to a maximum of 90
minutes when the game ended regardless of whether they
solved the problem. Afterwards, participants completed a
similar 21-item, multiple-choice, post-test assessment on
microbiology and self-report items gauging motivation and
cognitive load. The participant was then debriefed, paid
$10/hour, and thanked for their time.

5.5 Apparatus

5.5.1 Timestamped Log Files

Timestamped log files captured time participants initiated
actions using the mouse and/or keyboard for analysis. Spe-
cifically, this data channel provided event- and time-based
data during game-based learning, capturing the frequency
and duration of all learner-system interactions. We used
this channel to align and extract data from the other sources.

5.5.2 Facial Recognition Software

To capture affective states, we measured participants’ facial
expressions using a video-based facial expression and affect
recognition tracking system known as FACET [31], [36].
FACET has been validated by empirical testing [36], [37].
Specifically, [36] conducted a systematic comparison
between 14 databases with dynamic facial expressions using
FACET software to assess whether it was comparable to
human recognition performance. Detection rates were above
50% for the majority of the databases, but a proportion of
facial stimuli could not be recognized by the machine-learn-
ing algorithm, showing significant differences in recognition
performance between the databases. This suggests that the
FACET software is sensitive to potential differences in facial
features or structures across humans, and that diversity may
impact the accuracy of emotion recognition and detection.
Another study by [38] compared Affectiva, another facial
recognition software, with FACET. Accuracy differed for
distinct emotions, and FACET performed better. Overall,
FACET achieved acceptable accuracy for standardized pic-
tures, but performed worse for more natural facial expres-
sions. While we acknowledge that facial recognition
software has its limitations [39], we would like to highlight
their value in capturing continuous, longitudinal data on
facial expressionswhich provides an opportunity to examine
affective dynamics over time compared to other measure-
ment tools of affective states (see Section 3.1).

The facial features correspond to a defined set of facial
muscle movements (i.e., action units such as an inner brow
raiser), and composite affective states (i.e., a combination of
different action units that correspond to a particular emo-
tion). Specifically, FACET utilizes a support vector machine
that was trained to capture facial features, based on the
Facial Action Coding System (FACS [30]), when they devi-
ated from the participant’s baseline (i.e., neutral facial
expression). To increase our ability to capture affective
states across learners, we instructed participants to display
their neutral expressions prior to engaging with Crystal
Island, which served as a base line for the facial recognition
software to facilitate the detection of deviations from indi-
vidual baseline expressions. The software generates an evi-
dence score for each affective state and action unit based on
the degree that facial landmarks have deviated from the
baseline neutral facial expression. An evidence score is gen-
erated when the deviation occurs and represents the odds
of a human coder classifying the presence of an affective
state or action unit deviation from baseline on a log likeli-
hood scale. This means that when an evidence score of 1
occurs for a confused affective state, then the 1 would indi-
cate that there is a likelihood that 10 human coders would
classifying that there is a confused affective state present.
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For purposes of this study, we extracted and converged
facial expressions of confused, frustrated, and neutral states
when the evidence score indicated at least a 1 . An evidence
score of 1 or higher was used as an indicator that the affec-
tive state was present.

5.5.3 Eye Tracker

An SMI EYERED 250 eye tracker [40] was used in this study
to detect pupil and fovea locations via infrared light.We cap-
tured eye movements at a sampling rate of 30 Hz using a 9-
point calibration while participants learned with Crystal
Island. This calibration allowed us to measure eye move-
ments at an offset of less than 0.05mm. Specifically, calibra-
tion is the process whereby the geometric characteristics of a
participant’s eyes are estimated as the basis for a fully-cus-
tomized and accurate gaze-point calculation. The highest
calibration on the eye tracker was 9-points across the screen,
allowing for the most accurate estimation of the geometric
shape of the eye and location of the pupil. While seated, par-
ticipants were asked to observe a moving dot on the eye-
tracking monitor. This calibration process took less than 1
min to complete. Next we analyzed the captured eye move-
ment data for quality. This process was completed by exam-
ining the quality of eye movement recordings and removing
the data sets for those participants that had less than 80%
gaze sample. The gaze sample refers to percentage of the
times that eyes were correctly detected by the eye tracker for
each participant. For example, 100% means that one or both
eyes were detected by the device throughout the recording;
50% means that one eye or both eyes were found for half of
the recording duration. While screen-based eye tracking
experiments typically require users to look at the screen
while completing a task, some people may look away or look
down (e.g., at the keyboard or mouse) to think about a prob-
lem.We processed the eye-tracking data using iMotions soft-
ware [31] and defined Areas of Interest (AOIs) around game
elements related to scientific reasoning such as a research
article or book. AOIs were operationally defined as gaze
points within 1# visual angle that lasted for at minimum 250
ms [41], andwe used these metrics to generate the amount of
time participants fixated on game elements related to scien-
tific reasoning (i.e., actions 1-3; see Table 1).

5.6 Coding and Scoring

5.6.1 Aligning Data Channels

Data were extracted and temporally aligned using a pipeline
built in Python [42]. Processing, cleaning, analysis, and data
visualizations were conducted using R software version
3.6.0 [43]. We computed multilevel growth models using

’lme4’ [44]. Three data channels were aligned in this study:
(1) timestamped log files, (2) eye gaze, and (3) facial expres-
sions of emotions. To combine these data on the same tempo-
ral scale, we converted eye gaze and facial expressions data
frommilliseconds to seconds. Next, we examined when par-
ticipants initiated actions during game-based learning and
relied on the log file timestamps to dictate when we would
extract both eye-gaze and facial expressions variables. When
a participant initiated an action (e.g., opening a book), we ref-
erenced the time elapsed to align whether an facial expres-
sion was present at the start of the action (e.g., confusion
detected at the timestamp when the book was opened), as
well as whether the participant was fixating on a game ele-
ment while they were engaging in an action via log file (e.g.,
opened a book in the log file and was also fixating on the
book via eye gaze). Each time a participant initiated an action
that correspondedwith scientific reasoning (Table 1 for more
details), we combined facial expression and eye gaze data
such that it corresponded to the timestamp in the log file.

5.6.2 Scientific-Reasoning Action Variables

To define scientific-reasoning action variables, we used a
technique that combines both eye fixations and timestamped
log files (e.g., see [45]) that corresponded to scientific-reason-
ing actions outlined in Table 1. Actions were considered sci-
entific reasoning based on the scientific reasoning as dual
space framework [46]. Specifically, when the log file sug-
gested that a participant initiated a scientific-reasoning
action (e.g., gathering information by talking with a non-
player character), then we referenced the timestamp and
assessed whether the participant was fixating on the game
element that corresponded with the action (e.g., non-player
character) to ensure they were engaged in the action rather
than aimlessly (or accidentally) selected game elements. Spe-
cifically, if a participant opened a book 5 minutes into the
game, it was reflected in the log file andwe defined the action
as gathering information if the participant only opened the
book and fixated on the text in the book for longer than
250ms. Further, we extracted the time participants engaged
in scientific-reasoning actions only when eye-gaze and log
files were consistent over time. We included eye gaze
because empirical evidence supports that when participants
fixate on content, it has been indicative of cognitive process-
ing of informationwith emerging technologies [45], [47].

5.6.3 Facial Expressions of Emotions

Affective states were defined using evidence scores that rep-
resented deviation from the participant’s baseline facial
expression (see 5.4.2. for details). Specifically, we extracted

TABLE 1
Operational Definitions for Scientific-Reasoning Actions

Variables Data channels Game elements

Action 1: gathering information Timestamped log files and eye
fixations

Reading books, research articles, and posters; talking to
NPCs.

Action 2: hypothesis generation Timestamped log files and eye
fixations

Backpack, food items, first field in the diagnosis
worksheet.

Action 3: experimental testing Timestamped log files and eye
fixations

Final diagnosis field on the worksheet, concept matrix,
and scanner.
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when facial expressions of frustration, confusion, and neu-
tral state were captured at the start of scientific-reasoning
actions (e.g., reading a book) and were computed based on
the amount of time participants facially expressed these
affective states during actions outlined in Table 1. Using a
combination of relative and absolute thresholding of ampli-
tude, the evidence scores were preprocessed and smoothed
within an 11-step window for evidence scores representing
at least 1 or above, and these scores were standardized by
learner to a unit normal distribution to account for individ-
ual differences in facial expressions. The relative threshold-
ing was calculated by classifying an affective state based on
an evidence score representing a standardized value above
1.65 (the top 5% of observations) for at least 0.5 seconds to
avoid capturing micro-expressions and to increase validity.
Absolute thresholding was also calculated to classify events
as presence of an affective state when the raw evidence
score was at or above 1 to avoid values that were negative
(represented the likelihood that the affective state was not
present). This technique yielded continuous events during
game-based learning that represented muscle contractions
above learners’ baseline (i.e., neutral) affective state for at
least 0.5 seconds according to FACS.

5.7 Statistical Analysis
To estimate the general trend of time scientifically reasoning
during game-based learning and its relation to time facially
expressing frustration, confusion, and neutral states , we
usedmultilevel growthmodels [48]. Multilevel growthmod-
els can handle unbalanced design or unequally spacedmeas-
urements, hierarchical structures, and hold less stringent
assumptions. To estimate the general trend of time scientifi-
cally reasoning and its relation to time facially expressing
frustrated, confused, and neutral states during scientific rea-
soning, we calculated two-level multilevel growth models of
longitudinal change [27], [28], [32].

The Level-1 model (within-individuals; 15,882 units; see
Equation (2)) described each learner’s change in time scien-
tifically reasoning trajectory using growth curve parameters,
where the intercept represented the learner’s initial status
while the slope represented the learner’s growth rate. The
outcome variable represented by SR indicates scientific rea-
soning over time in Equations (1)–(4). The Level-2 model
(between-individuals; 78 units) estimated learners’ individ-
ual differences in growth curve parameters (i.e., inter-indi-
vidual differences in scientific-reasoning change) to model
whether features (e.g., duration of frustration present during
scientific reasoning) of individual change trajectories vary
across individuals (i.e., random effects; see r in Equations
(3)– (4)). We also included experimental condition and pre-
test scores as level two predictors to examine whether these
predictors varied between individuals, potentially indicat-
ing a moderation on relationships between time facially
expressing frustrated, confused, and neutral states and time
scientifically reasoning during game-based learning.

First, we estimated an unconditional means model (i.e.,
null model with no predictors) to partition the within- and
between-individual variance over time scientifically reasoning
by obtaining the intra-class correlation coefficient (ICC). ICC
measures the total variance explained between individual

learners. Next, to estimate the general trend of time scientifi-
cally reasoning during game-based learning, we estimated an
unconditional growth model (with no predictors other than
game play time [48]). We used these initial models to deter-
mine whether there were systematic mean level change as
well as individual variability in change related to time scientif-
ically reasoning over gameplay.

For the second research question, we calculated three
separate two-level multilevel growth models to examine
relationships between predictors: facially expressing (1)
confused, (2) frustrated, and (3) neutral states on outcome
variable: trend of time scientifically reasoning during game-
based learning at an alpha level of 0.05. All predictors were
defined as fixed effects, and we added a random effect for
each individual to assess the extent to which variation
between predictor and outcome variables (i.e., trend of time
scientific reasoning) was explained by individual differen-
ces. We assessed model fit using deviance metrics, likeli-
hood ratio test [49], and pseudo R2 [48]. We grand-mean
centered continuous predictor variables representing time
facially expressing frustration, confusion, and neutral states.
These variables were centered because this technique moves
the mean to zero to standardize the magnitude of time (e.g.,
X1 – Average) to compute meaningful intercepts that reflect
values when predictors were at zero. The time variables for
facial expressions of frustrated, confused, and neutral states
served as predictors and were centered to the start of each
scientific-reasoning action. We also computed time within
the game, where game play time was centered immediately
after the tutorial was completed in Crystal Island so that we
only analyzed time that learners were interacting with the
game rather than completing the tutorial. Centering thus
helps us to establish meaningful zero points which, in turn,
affects our regression output. We selected this centering
technique to compute an intercept that represented a time
of 0 (at the start of learning with Crystal Island). To test the
statistical significance of random effects, we used Type III
Sum of Squares because it is not sample size dependent and
was built to handle unstructured time variables [50], such
as game time which varied between individuals. Full maxi-
mum likelihood estimation was used since we compared
models that differed in both fixed and random components
throughout model building stages.

Unconditional Models:

Yij ¼ !00 þ !01
%ðTimeÞij þ s0j þ s1j

%ðTimeÞijeij (1)

where Yij describes the outcome variable (e.g., time scientific
reasoning), lambda00 and !01 are, respectively, mean initial
status and average growth rate. The symbols s0j, s01, and e
represent, respectively, residual variance in initial status,
residual variance in growth rate, and within-person residual
variance.

Condition Models:

Yij ¼ !00 þ !01
%ðTimeÞ þ !02

%ðActionÞ
þ !03

%ðFacialExpressionÞ
þ !04

%ðFacialExpressionÞ%ðTimeÞ
þ !05

%ðPreTestScoreÞ þ !06
%ðExperimentalConditionÞ

þ s0j þ s1j þ eij (2)
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where Yij represents the outcome variable (e.g., time scien-
tifically reasoning). !0j and !1j, respectively, represented the
average initial status and average growth rate for predic-
tors. Symbols s0j, s1j, and eij, represent, respectively, resid-
ual variance at initial status, residual variance in growth
rate, as well as within-individual residual variance.

6 RESULTS

Prior to calculating the analyses, descriptive statistics were
estimated across the predictor and outcome variables to
gauge the extent of time learners engaged in all and differ-
ent scientific-reasoning actions as well as time facially
expressing frustrated, confused, and neutral states across
the agency conditions (Table 2).

6.1 To What Extent Does Time Scientifically
Reasoning Change Over Time?

To describe and partition the variance of time scientifically
reasoning during game-based learning, we built an uncondi-
tionalmeansmodel to estimate the trend of time scientifically
reasoning during game-based learning with Crystal Island
between experimental conditions. The coefficients of the
unconditional means model are provided in Table 3. Specifi-
cally, the variance components of the unconditional means
model showed that approximately 1% of the variance in sci-
entifically reasoning was explained between individuals,
where the average time scientifically reasoningwas 31.48 sec-
onds and statistically significant from zero (p< 0.05). The
95% confidence interval of average time scientifically reason-
ingwas between 29.71 to 33.32 seconds at each instance.

Next, we added a linear slope to the Null model to assess
whether adding game play time (i.e., unconditional growth
model) assisted in explaining variation in the time scientifi-
cally reasoning. The results indicated that by adding game
play time as a predictor, it explained more variation in time
scientifically reasoning between (as compared to within)

individuals from 1% to 2% (Growth model in Table 3). This
indicates that total time a learner spent in the game played
a role on time spent scientifically reasoning, where the aver-
age time was 49.55 seconds and significant from zero
(p< 0.05; Table 3). The model suggested a negative growth
rate, such that the more seconds spent learning with Crystal
Island was related to less seconds scientifically reasoning
(b=-0.01, 95% CI: [-0.009, 0.007], p< 0.05). Although, it is
important to note this negative association was small since
actions were captured in seconds.

To examine the best model fit, we modeled the slope as
randomly varying to assess whether time scientifically rea-
soning was significantly varying within individuals. Results
suggested a negative growth rate, and the model found that
adding game time as a random slope increased the propor-
tion of variance from 2% to 8% (Mixed Model in Table 3).
The average time scientifically reasoning was 51.06 seconds
and statistically significant from zero (p< 0.05), where the
more seconds in game play was related to a decrease in sec-
onds scientifically reasoning (b=-0.01, 95% CI: [-0.009,
-0.007], p< 0.05). Additionally, the variance in initial status
of game time in Mixed Model suggested that some learners
engaged in actions for longer periods at the start of the
game relative to other learners. The growth rate was also
significant (p< 0.05), showing there were individual differ-
ences in the rate of growth for game play time. However,
there were no differences in time scientifically reasoning
between experimental conditions (p> 0.05). This partially
supported our hypothesis for research question 1, showing
that seconds scientifically reasoning changed over the
course of game-based learning, but that agency did not play
a role in time scientifically reasoning with Crystal Island.

6.2 To What Extent are There Relationships
Between Time Expressing Frustration,
Confusion, and Neutral States and Time
Scientifically Reasoning

To estimate whether and to what extent initial levels and
dynamics of time facially expressing frustration, confu-
sion, and neutral affective states predicted the trajectories
of time scientifically reasoning, we calculated growth
curve models. Specifically, we built three separate models
for each facial expression of affective state variables: frus-
tration, confusion, and neutral.

TABLE 2
Descriptive Statistics of Variables

Experimental ControlVariables
MðSDÞ1 MðSDÞ0

Action 1

Overall 2447.75 (415.79) 1880.29 (702.61)
Frustration 1142.7 (792.5) 1837.12 (124.35)
Confusion 1420.65 (111.2) 1772.8 (123.79)
Neutral 2242.9 (121.7) 2034.1 (170.9)

Action 2

Overall 509.60 (318.41) 433.83 (294.34)
Frustration 2387.69 (181.6) 3786.44 (344.70)
Confusion 3004.41 (268.60) 3680.04 (338.73)
Neutral 4368.25 (288.23) 3986.77 (411.67)

Action 3

Overall 454.54 (137.07) 420.22 (199.49)
Frustration 1521.14 (112.52) 2198.85 (191.16)
Confusion 1954.44 (180) 2155.51 (197.20)
Neutral 3008.83 (192.06) 2328.81 (259.06)

Note. Action 1=Gathering information; Action 2=Generating hypotheses;
Action 3=Experimental testing; data are in seconds.

TABLE 3
General Trend of Time Changes in Scientific-Reasoning Actions

Null Growth Mixed Model

Estimate (SE) Estimate (SE) Estimate (SE)

Fixed effects
Initial status 31.48*(0.90) 49.55*(1.63) 51.06*(2.54)
Growth rate -0.01*(0.00) -0.01*(0.00)

Random effects
Within-individual 68.06*

Initial status 19.93*

Growth rate 0.004*

Covariance -0.71

Deviance 179732 179406 179356
ICC 0.01 0.02 0.08

Note. Random effects=standard deviations; *p< 0.05.
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6.2.1 Frustration

The first model estimatedwhether the stability (i.e., intercept)
and affective dynamics (i.e., slope) in time facially expressing
frustrationwas related to the trajectories of time scientific rea-
soning during game-based learning (see Table 4). The fitted
model estimated that, on average, learners scientifically rea-
soned for approximately 114.97 seconds at the start of learn-
ing with Crystal Island, and that the average rate of growth
for 1 unit increase in seconds scientifically reasoning was
related to an average 0.5 decrease in growth rate of seconds
scientifically reasoning over the course of game-based learn-
ingwhile holding other predictors constant. Specifically, there
was also a positive association between time expressing frus-
trated states and scientific reasoning. This highlighted that,
while holding all else constant, for each 1 second increase in
facially expressing frustration, was associated with a 0.32 sec-
ond increase in time scientifically reasoning (fixed effects).
The model also estimated negative associations across all sci-
entific-reasoning action types (i.e., information gathering,
hypothesis generation, and experimental testing), highlight-
ing that the longer time learners scientifically reasoned over-
all, the less frequently they engaged in that action (relative to
nonscientific-reasoning actions such as moving to different
buildings). Results also suggested significant, positive rela-
tionship between time scientifically reasoning and partici-
pants assigned to the restricted agency condition relative to
the full agency. There were no relations between pre-test
scores and time scientifically reasoning.

The variance components demonstrated significant varia-
tion within individuals for the growth rate of time scientifi-
cally reasoning and duration of facially expressing frustrated
states. The model also demonstrated that adding the predic-
tors (relative to the unconditional growth model) increased

the proportion of ICC by 68% and that 65% of the variance
explained in the dependent variable existed between individ-
uals (random effects). Themodel showed that 90% of the vari-
ance was explained by both the fixed and random effects,
leaving approximately 10% of the variation in seconds scien-
tifically reasoning unexplained.

6.2.2 Confusion

To examine the extent to which the stability (i.e., intercept)
and affective dynamics (i.e., slope) in time facially express-
ing confusion was related to time scientifically reasoning, a
second growth curve model was estimated (Table 4). This
model showed that, on average, learners scientifically rea-
soned for approximately 140.38 seconds at the start of the
game, and that the average rate of change for a 1 second
increase in time scientifically reasoning was associated with
a 0.05 decrease in the growth rate of time scientifically rea-
soning over the course of game-based learning, while hold-
ing all other predictors constant. Specifically, there was also
a positive association between time expressing confused
states and scientific reasoning. This highlighted that, while
holding all else constant, for each 1 second increase in
expressing a confused state, was associated with a 0.26 sec-
ond increase in scientific reasoning (fixed effects). The
model also suggested negative relationships between time
scientifically reasoning and action type: information gather-
ing, hypothesis generation, and experimental testing,
respectively (fixed effects). Results also showed significant
relationships between time scientifically reasoning and
Level-2 predictors: pre-test scores and experimental condi-
tion, but only for participants assigned to the restricted
agency condition relative to the full agency. This suggests

TABLE 4
Multilevel Growth Estimates of the Effects of Time Facially Expressing Frustration, Confusion, and Neutral Emotions on Time Scien-

tifically Reasoning Over time

Frustration Confusion Neutral

Variable Estimate (SE) Estimate (SE) Estimate (SE)

Fixed effects
Mean initial status 114.97 (27.13) 140.38* (21.11) 92.59* (29.43)
Mean growth rate -0.05* (0.01) -0.05* (0.01) -0.05* (0.01)
Emotion duration 0.32* (0.05) 0.26* (0.03) 0.40* (0.05)
Action1 -115.30* (4.54) -116.37* (3.77) -114.38* (1.93)
Action2 -84.19* (2.93) -84.78* (4.11) -83.57* (2.25)
Action3 -116.41* (12.58) -117.03* (7.03) -114.84* (5.35)
Pre-test scores [Level 2] -65.89 (50.04) -93.00* (38.86) -53.84 (53.39)
Experimental condition1 [Level 2] 50.31* (15.26) 33.03* (12.03) -4.94 (16.28)

Random effects
Within-individual 53.41 53.55 53.31
Initial status 82.31 62.89 97.66
Growth rate 0.05* 0.04 0.05*

Emotion duration 0.37* 0.27* 0.40*

Action1 37.55 30.18* 10.51
Action2 22.10 33.67* 14.53
Action3 110.29 60.68* 45.38

Deviance 172787 172672 172575
ICC 0.70 0.58 0.77
Pseudo-R2 (fixed effects) 0.25 0.30 0.35
Pseudo-R2 (total effects) 0.90 0.85 0.91

Note. *p< 0.05; Action1=Information gathering, Action2=Hypothesis generation; Action3=Experimental testing.
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that agency might have a positive moderating affect on time
scientifically reasoning.

Further, the variance components suggested that the
growth rate of time scientifically reasoning and the duration
of time facially expressing confused states significantly var-
ied within individuals (ps< 0.05), suggesting that individual
differences may play a role in relations between seconds sci-
entifically reasoning and the duration of confusion during
game-based learning. The fitted model estimated significant,
positive randomly effects for action types on time scientifi-
cally reasoning. This model demonstrated that adding the
predictors increased the proportion of ICC by 56% and that
55% of the variance explained in the dependent variable
existed between individuals. More specifically, the model
showed that 85% of the variance was explained by both the
fixed and random effects, leaving approximately 15% of the
variation in seconds scientifically reasoning unexplained.

6.2.3 Neutral

Last, we estimated a third growth curve model to examine
the extent to which stability (i.e., intercept) and affective
dynamics (i.e., slope) in time expressing a neutral state was
related to time scientifically reasoning during game-based
learning (Table 4). This model showed that, on average,
learners scientifically reasoned for approximately 92.59 sec-
onds at the start of the game, and that the average growth
rate for 1 second increase in scientific reasoning overall, there
was a 0.05 second decrease in seconds scientifically reasoning
over the course of game-based learning, while holding all
other predictors constant. There was also a significant, posi-
tive relationship between time expressing a neutral state and
the time scientifically reasoning. While holding all else con-
stant, for a 1 second increase in expressing a neutral state,
there was a 0.40 second increase in scientifically reasoning
(fixed effects). This showed that the longer a neutral state
was expressed, it was associated with longer engagements in
scientific reasoning across game play. The model also sug-
gested negative relations between time scientifically reason-
ing and action type: information gathering, hypothesis
generation, and experimental testing, respectively (fixed
effects). Results did not find significant relationships between
time scientifically reasoning and Level-2 predictors: pre-test
scores and experimental condition (ps> 0.05).

Further, the variance components indicated that the
growth rate of time scientifically reasoning significantly var-
ied within individuals (p< 0.05), showing individual differ-
ences (i.e., within-subjects variation) explained the initial
level (i.e., intercept) and affective dynamics (i.e., slope) of
time engaging in actions during game-based learning. The
model also found that neutral state duration significantly
varied within individuals (p< 0.05), showing individual dif-
ferences played a role in variation explained in time engag-
ing in scientific reasoning. This model demonstrated that by
adding the predictors, it increased the proportion of ICC by
75% and that 56% of the variance explained in the depen-
dent variable existed between individuals. More specifi-
cally, the model showed that 91% of the variance was
explained by both the fixed and random effects, leaving
approximately 9% of the variation in seconds scientifically
reasoning unexplained.

7 DISCUSSION

Several studies suggest affect is associated with higher-
order thinking like scientific reasoning with emerging tech-
nologies such as game-based learning environments. Yet,
significant gaps in literature exist because few studies
employ sophisticated methodological and analytical techni-
ques built to define, capture, and analyze affective dynam-
ics and its relation to higher-order thinking over time
during game-based learning using granular time series mul-
tichannel data. To address these issues, we examined rela-
tionships between time expressing frustration, confusion,
and neutral states and time scientifically reasoning.

7.1 Research Question 1
The first model showed that the average time scientifically
reasoning was 51.06 seconds, and that the longer learners
engaged with Crystal Island, the less time they scientifically
reasoned. Although, variance in time scientifically reasoning
was explained within learners, suggesting that some learners
engaged in scientific reasoning for longer periods of time rel-
ative to other learners. Further, the findings showed that
there were individual differences in the rate of growth in
time scientifically reasoning across game-based learning.
This supported our hypothesis for research question 1, show-
ing that time scientifically reasoning changed across time.
These findings are consistent with the scientific reasoning as
ICALM framework [46] and previous research that suggests
individual characteristics play a role in scientific-reasoning
behaviors across different emerging technologies [45], [51].

7.2 Research Question 2
Next, we examined associations between affective dynamics
of expressing frustration, confusion, and neutral states and
the trajectories of time scientifically reasoning with Crystal
Island. Our models estimated that the average growth rate
of time scientifically reasoning was negatively associated
with time engaging in scientific reasoning, suggesting that
the average growth rate of time scientifically reasoning was
related to less time engaging in scientific reasoning over the
course of game-based learning. Additionally, across the
multilevel models, there were significant negative relations
between the trajectory of time scientifically reasoning and
action type, meaning that increases in the trajectory of scien-
tific reasoning were associated with decreases in time
engaging in specific scientific-reasoning actions over time.
Further, we found significant relations between experimen-
tal condition, where learners assigned to the restricted
agency condition showed positive associations with time
engaging in scientific reasoning compared to the full agency
conditions, particularly for multilevel growth models with
frustrated and confused predictors compared to neutral
predictors. A possible explanation for this finding could be
that agency plays a moderating role on relations between
affect (e.g., frustrated and confused states) and the trajec-
tory of time scientifically reasoning during game-based
learning. Specifically, when agency is restricted in pursuit
of fostering scientific reasoning about relevant content and
materials, it may have a positive moderating effect on rela-
tions between confusion, frustration, and scientific reason-
ing. However, more research is needed to adequately
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support this hypothesis. Future studies should pay closer
attention to the degree of autonomy that learners are
granted during game-based learning to assess its potential
confounding influence on affect, its dynamics, and cogni-
tion [12].

The fitted model estimated significant positive relations
between the duration of frustrated, confused, and neutral
states and the trajectory of scientific reasoning during
game-based learning. This finding supported our hypothe-
sis, where we expected relationships to exist between affec-
tive states and the trajectory of scientific reasoning during
game-based learning. The results also suggested that time
expressing frustration, confusion, and neutral states signifi-
cantly varied within individuals, and explained a great deal
of variation in the trajectory of scientifically reasoning
across (see Table 4). This was interesting and a possible
explanation could be that individual characteristics play a
moderating role on relationships between affective states
and higher-order cognition. This finding is partially consis-
tent with the ICALM model [7] which suggests that nega-
tive affect reduces cognitive resources needed to initiate
and engage in higher-order thinking within working mem-
ory. A possible explanation for this finding could be that
regulating confusion may have a different psychological
basis than when regulating frustration and thus may be
affecting working memory overload differently depending
on the action being initiated or context (e.g., experimental
testing versus generating hypotheses versus gathering
information). There are additional gaps in research as few
studies and contemporay theories (e.g., ICALM) because lit-
tle to no studies explain the role of neutral states on cogni-
tive resources or its role in affective dynamics. For example,
do neutral states require cognitive resources to sustain?
Does a neutral state indicate the effective use of an emotion
regulation strategy, and to what extent does time expressing
neutral states require cognitive resources (e.g., cognitively
reappraising frustration in order to sustain a neutral state,
etc.)? Previous research highlights mixed findings regarding
relationships between confusion, frustration, and higher-
order thinking [24], [26], [27], but little research has studied
neutral states and their role on relations between affective
dynamics and cognition with game-based learning environ-
ments. We suspect that relying on one data channel i.e.,
facial expressions of emotions to define, capture, and ana-
lyze associations between affective dynamics and higher-
order cognition like scientific reasoning may not fully repre-
sent the complex nature of affective states. Including other
data channels that represent the subsystems of affect would
be a promising direction for future researchers to consider.
For example, what might data channels on physiology, self-
reported emotions, and emote-aloud protocols [54] offer
more insight into how to fully represent affective states over
time. We explain more in the future directions subsection
below.

7.3 Future Directions
Studying affective states dynamically presents a promising
avenue to study affective states and cognition during learn-
ing with emerging technologies across time and contexts.
The temporal component of an affective experience

provides a dimension of data that is rarely accounted for,
and to gain more insight into this relationship, future
research should utilize contemporary emotion regulation
frameworks and multimodal data to detect potential detri-
mental affective states to assist individuals in effective emo-
tion-regulation strategies such that they might be
cognitively capable of making informed decisions driven by
reason [52]. A start in this direction could be utilizing a mul-
timodal mixed methods approach to capture the entire
affect process [6], [39] like antecedents of an affective state
of learners using both quantitative and qualitative data.
What content were they viewing prior to the confused affec-
tive state, and could that pinpoint where the impasse
stemmed from? Might it shed light on their goals and values
and potentially help answer the question of why an affec-
tive state emerged in the first place to inform an effective
emotion-regulation strategy if necessary? For example, if
there was an impasse in goal pursuit (e.g., doing well in the
course) and a learner expressed confusion while viewing
the content, the system may be able to detect how to best
assist the learner in regulating their affect by accounting for
individual characteristics and then monitoring where and
for how long they were fixating on content (e.g., was the
content they were fixating on related to the goals of the
learning session) and did they express confusion while
reading about a particular topic? This data could inform
ways to effectively provide scaffolding and pedagogical
techniques to assist with emotion regulation into the design
of technologies capable of monitoring and recognizing
potentially detrimental affective dynamics that interfere
with higher-order thinking [7], [24].

7.4 Limitations
In this study,most of our samplewere Caucasian undergrad-
uates across North America which does not represent most
learners. Additionally, it is essential to acknowledge the limi-
tations of facial recognition software that was trained using
facial features captured from a largely white-male sample,
potentially presenting limitations in recognizing facial
expressions of affect from other cultures, races, and genders.
Further, it is important to emphasize that when only collect-
ing facial recognition data, there is an inherent assumption
that facial expression displays are indicative of internal affec-
tive states. We acknowledge this limitation but observe that
that facial recognition software offers continuous, granular
data streams that can provide a mechanism for studying
affective dynamics. Future researchers should collect
streams of data on affective states like self-reports converged
with facial expressions, physiology, and retrospective inter-
views to validate an affective state presence.

8 CONCLUSION

Evidence suggests affect is associated with higher-order
thinking about complex topics with game-based learning
environments [1]. Studies find mixed results regarding rela-
tionships between negative affect and higher-order thinking
[26], [27], [28], [32], [53]. We argue these mixed findings
result from few studies implementing advanced methodo-
logical and analytical techniques to align with contempo-
rary theories describing affective dynamics and their
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relationship with higher-order thinking using granular time
series data from multiple sensors. Our findings provide
implications for addressing an essential aspect of designing
affect-aware technologies: accounting for the dynamics of
affective experiences and their relation to scientific reason-
ing. Advancing our understanding of the complex role of
affect as it relates to higher-order thinking could provide a
framework for designing affect-aware technologies that
fuse multimodal data to captures the entire affective experi-
ence including its dynamics [4]. If a system can detect detri-
mental affective experiences (e.g., confusion persisting for
too long), we have opportunity to design intelligent features
within these systems to assist individuals in regulating their
negative affective, such as prompting effective emotion-reg-
ulation strategies [18] to enhance their capacity to process
information and utilize higher-order thinking skills across
time.
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