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Introduction

Advances in game- based learning environments are introducing a broad range of 
opportunities for supporting student learning. The past de cade has witnessed signifi-
cant theoretical developments (Adams & Clark, 2014; Clark, Sengupta, Brady, Martinez- 
Garza, & Killingsworth, 2015; Gee, 2007; Gibson, Aldrich, & Prensky, 2007; Habgood & 
Ainsworth, 2011), the creation of game- based learning environments for many subjects 
(Adams & Clark, 2014; Halpern, Millis, & Graesser, 2012; Kebritchi, Hirumi, & Bai, 
2010; Warren, Dondlinger, & Barab, 2008), and an expanding body of lit er a ture on the 
design and educational effectiveness of digital games (Adams & Clark, 2014; Habgood 
& Ainsworth, 2011; Ketelhut, Nelson, Clarke, & Dede, 2010; Meluso, Zheng, Spires, & 
Lester, 2012; Wouters, van Nimwegen, van Oostendorp, & van der Spek, 2013).

Games have long held  great promise for creating learning experiences that are both 
effective and engaging. Although in the past the potential of games to support learn-
ing was viewed as substantial,  until recently  there was  little empirical evidence to 
support this view. Recent syntheses of the game- based learning lit er a ture have found 
that games can yield positive learning outcomes across a range of subjects and set-
tings (Connolly, Boyle, MacArthur, Hainey, & Boyle 2012; Martinez- Garza, Clark, & 
Nelson, 2013; McClarty et al., 2012; Perrotta, Featherstone, Aston, & Houghton, 2013; 
Sitzmann, 2011). Furthermore, a pair of meta- analyses in de pen dently concluded that 
game- based learning is often more effective than traditional instructional methods 
with re spect to learning and retention (Clark, Tanner- Smith, Killingsworth, & Bellamy, 
2013; Wouters et al., 2013).

Although  there is now significant evidence suggesting that games can serve as an 
effective medium for learning, a key prob lem posed by game- based learning is how to 
support learners most effectively. In par tic u lar, an open question in research on game- 
based learning environments is how to design instructional support, feedback, and 
coaching that are artfully integrated into core game mechanics in a manner that serves 
the dual functions of advancing gameplay while si mul ta neously promoting learning.
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Instructional Support, Feedback, and Coaching in Game- Based Learning
Instructional support, feedback, and coaching serve an impor tant role in game- based 
learning environments. The guidance provided by vari ous forms of support holds the 
potential to promote deeper learning experiences and enable learners to focus on the 
most salient aspects of a learning scenario. In contrast, one can imagine game- based 
learning environments that operate in a pure discovery learning fashion in which 
learners are given no support (Kirschner, Sweller, & Clark, 2006). In  these environ-
ments, learners would be expected to support their own learning experiences without 
any guidance, and  these might yield the same types of unsatisfying outcomes as some 
discovery learning experiences (Mayer, 2004). Thus, embedding guidance in game- 
based learning holds much appeal.

A particularly compelling category of game- based learning environments that pro-
vide dynamic instructional support, feedback, and coaching is intelligent game- based 
learning environments, which integrate game technologies and intelligent tutoring sys-
tems (Lester et al., 2013). Research on intelligent game- based learning environments 
is investigating a broad range of functionalities for providing dynamic instructional 
support, feedback, and coaching that are tightly integrated into game- based learning 
environments (DeFalco et al., 2018; Lee, Rowe, Mott, & Lester, 2014; Lester et al., 2013; 
Pezzullo et al., 2017; Robison, McQuiggan, & Lester, 2009; Rowe & Lester, 2015).

 Because it is hypothesized that game- based learning environments can promote 
learning through adaptive support, the design of intelligent game- based learning envi-
ronments is guided by the premise that intelligent tutoring system functionalities 
can be introduced into games to provide key support mechanisms that have emerged 
from several de cades of research on intelligent tutoring systems (Woolf, 2009).  These 
mechanisms are often decomposed into what are termed “outer loop” mechanisms and 
“inner- loop” mechanisms (VanLehn, 2006).

Functionalities in the “outer loop” of an intelligent tutoring system are responsible 
for selecting the tasks that students  will perform. For intelligent game- based learning 
environments, task se lection could be used to determine which episode of a game a 
student  will interact with, which level of a game a student  will play, or which problem- 
solving scenario within a level a student might be given. As with “outer loops” in 
intelligent tutoring systems, a variety of pedagogies might be implemented, and an 
intelligent game- based learning environment can select from a predefined set of  these 
or perhaps dynamically generate them using procedural content- generation techniques 
(Shaker, Togelius, & Nelson, 2016).

Intelligent game- based learning environments can also implement intelligent tutor-
ing systems’ “inner loop.” Functionalities in the “inner loop” of intelligent tutoring 
systems typically focus on support that is centered on smaller granularities of sub-
ject  matter and span shorter intervals of time (VanLehn, 2006). Intelligent tutoring 
system “inner- loop” supports include providing minimal feedback on a fine- grained 
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problem- solving action, providing feedback that is specific to par tic u lar conceptual 
or problem- solving errors, providing hints on potential upcoming problem- solving 
actions, assessing students’ knowledge, and conducting a review of a student’s pro-
posed solution. Intelligent game- based learning environments can provide analogous 
families of support for students. For example, they can use nonplayer characters or 
pedagogical agents (Johnson & Lester, 2016) to provide minimal or error- specific feed-
back on a student’s actions in the game or hints related to a student’s upcoming quest; 
they can conduct stealth assessment (Min et al., 2015; Min, Frankosky, et al., 2017; 
Shute, 2011) to provide a formative assessment of the student’s competencies as evi-
denced through gameplay; and they can perform an after- action review (Brown, 2011) 
to review a student’s recent gameplay experience.

This chapter explores instructional tactics that can be implemented in intelligent 
game- based learning environments to support learning with a focus on inner- loop 
functionalities. Connections between instructional strategies and theories of learning 
are used to highlight how support can be designed to help learners select relevant 
information in the learning environment, or ga nize information into coherent  mental 
repre sen ta tions, and provide learners with hints and support during task per for mance 
to guide learning.

What Do We Know about Instructional Support, Feedback, and Coaching in Game- 
Based Learning?

In this section, we review relevant research lit er a ture regarding the effectiveness of 
instructional support, feedback, and coaching in game- based learning environments. 
To foreshadow the discussion, we note that research in this area is still in its infancy. 
Although many claims have been made about the benefit of game- based learning envi-
ronments, empirical evidence regarding their effectiveness is fragmented and riddled 
with methodological limitations. Mayer and Johnson (2010) described three general 
methods researchers have used to evaluate learning outcomes with games. The cog-
nitive consequences method is used to investigate  whether playing a game improves 
a specific cognitive skill (i.e., what do players learn from playing the game?). With 
the media comparison method, researchers compare  whether  people learn better with 
games or conventional media. A third method researchers use is to compare the learn-
ing outcomes of students who receive dif fer ent versions of the same game (i.e., which 
type of feedback is most beneficial for learning; see Mayer & Johnson, 2010). This third 
approach, referred to as the value- added approach, is the most relevant for evaluating the 
impact on learning outcomes of instructional support and feedback in games (Mayer 
& Johnson, 2010). In the following sections, we review research that has used each of 
 these approaches and discuss how the results can be used to improve student outcomes 
in game- based learning environments.
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Supporting Learning in Game- Based Environments through Feedback
It is well established that feedback is impor tant for learning in game- based learning 
environments (Azevedo & Bernard, 1995; Mayer, 2014). The purpose of feedback is to 
help learners evaluate their pro gress and per for mance, identify knowledge gaps, and 
repair faulty knowledge (Johnson & Priest, 2014). Ultimately, providing learners with 
feedback can be an effective method of guiding them to achieve a deeper understand-
ing of the subject  matter.

In a recent review of the feedback and gaming lit er a ture, Johnson, Bailey, and Van 
Buskirk (2017) identified four general ways in which feedback can be instantiated in 
game- based learning environments and provided a review of their effectiveness. Specif-
ically, the authors found feedback can vary according to (1) the content of the feedback 
message, (2) the timing of the feedback message, (3) the modality in which feedback 
is presented, and (4)  whether feedback is adapted based on learner aptitude or char-
acteristics. They also proposed that content feedback be further classified according 
to  whether the feedback message is outcome oriented or pro cess oriented. Outcome- 
oriented feedback provides learners with information about their current level of per for-
mance or the correctness of their response (Johnson et al., 2017). Examples of outcome 
feedback include knowledge of results (“your answer is correct”), knowledge of correct 
results (the correct answer is D), error flagging (“the last part of your answer is incor-
rect”), and environmental feedback (a student’s answer results in a character receiv-
ing an award). Process- oriented feedback provides learners with explanatory information 
about the pro cesses or strategy used to reach the correct answer (Johnson et al., 2017). 
Its purpose is to provide the learner with information that can be used to close the 
gap between his or her current level of understanding or per for mance and the level of 
per for mance required to meet the objective in the game. Examples of process- oriented 
feedback include informational prompts and hints that guide students  toward the cor-
rect answer, topic- specific feedback, and error- sensitive feedback that provides infor-
mation related to why an answer is correct or incorrect. As noted by Johnson et al., 
outcome and pro cess feedback are not mutually exclusive: feedback statements can 
include both forms of content (Johnson et al., 2017).

What do we know about the effectiveness of feedback content in game- based learning 
environments? In general, empirical evidence suggests that process- oriented feedback 
is superior to outcome- oriented feedback (e.g., minimal feedback) for helping learn-
ers develop a deeper understanding of instructional material. The benefits of process- 
oriented feedback are evident in near transfer tasks and tests of knowledge retention. 
For example, Mayer and Johnson (2010) explored the benefits of explanatory feedback 
in an arcade- style educational game designed to teach students how to solve prob lems 
about electrical cir cuits. In the game, students gained or lost points based on their abil-
ity to correctly solve circuitry prob lems. When students submitted a correct answer, 
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they received a “correct” tone and several points. When they submitted an incorrect 
answer, they received an “incorrect” tone and lost points from their score. Students who 
played the standard version of the game received minimal feedback (through the tones 
and points). Students who played the explanatory version of the game received mini-
mal feedback as well as process- oriented feedback that explained the correct answer. 
The last level of the game served as an embedded transfer test and required students to 
use their knowledge of electrical circuitry to solve a complex circuitry prob lem.. Results 
showed that students in the explanatory feedback condition outperformed participants 
in the outcome- oriented feedback condition during gameplay (d = 1.31) and on the 
embedded transfer task (d = .68). The authors concluded that providing direct guidance 
in the form of explanatory feedback helped students develop a deeper understanding 
of the material than providing minimal guidance through corrective feedback alone.

Using a value- added approach, Moreno and Mayer (2005) also found benefits from 
providing learners with explanatory feedback in a multimedia- style game. In their 
study, college students learned about botany while playing an interactive game called 
Design- a- Plant (Lester, Stone, & Stelling, 1999). During gameplay, students traveled to 
five alien planets, learned about plant parts and weather conditions, and learned how 
to design a plant that could flourish in dif fer ent environmental conditions (figure 8.1). 
Students  were supported during the game by a pedagogical agent, Herman the Bug, who 
offered individualized advice and feedback on the relationship between plant features 
and weather conditions. Students  were randomly assigned to receive  either minimal 
feedback on the correctness of their answer during game play or explanatory feedback 
about why a certain plant design would survive or perish in the planet’s environment. 
 After finishing the game, students completed a retention test to assess their under-
standing of basic factual information about botany and a problem- solving test, which 
required students to apply the princi ples they learned in the game. Results showed 
that students who received explanatory feedback scored higher on near (d = .75) and 
far (d = 1.68) transfer problem- solving tasks than students who received corrective feed-
back only, and they produced fewer incorrect answers during gameplay.  These results 
suggest that providing learners with explanatory feedback in game- based multimedia 
environments can promote deep, meaningful learning.

More recently, researchers have investigated the generalizability of providing 
process- related feedback in more immersive game- based training environments. For 
example, Billings (2012) used a value- added approach to investigate the effect of pro-
viding learners with dif fer ent levels of feedback specificity during a game- based train-
ing exercise designed to teach search- and- rescue procedures. The training exercise 
required participants to navigate in a virtual environment and search buildings for 
dif fer ent items while following a set of procedures outlined in the learning objectives. 
The learning objectives included procedures for entering and exiting buildings, clear-
ing buildings, and communicating with headquarters. Four feedback conditions  were 
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compared: nonadaptive detailed feedback, nonadaptive general feedback, adaptive top- 
down feedback, and adaptive bottom-up feedback. Each condition corresponded to dif-
fer ent levels of feedback specificity. In the nonadaptive detailed condition, participants 
received feedback about which learning objectives they failed and how to correctly 
perform them  after each mission (e.g., “Before entering or tagging a building, you 
should walk around the entire building to make sure it is not already tagged”). In the 
nonadaptive general condition, participants only received general feedback statements 
about the learning objectives they forgot to apply during the training mission (i.e., 
“Remember to apply the procedures for entering and exiting a building”). In the adap-
tive bottom-up feedback condition, students began the training missions by receiving 
detailed feedback about the errors they committed.  After demonstrating increased mas-
tery of the learning objectives, the feedback statements changed from detailed to gen-
eral. Conversely, in the adaptive top- down condition, participants started with general 
feedback and then faded to statements that  were more detailed if learning objectives 
 were not being met. Billings (2012) postulated that providing students with adaptive 
bottom-up feedback would produce better learning outcomes than the nonadaptive 
strategies,  because of the advantages associated with personalized instruction. Billings 
also posited that detailed feedback would be better at supporting knowledge integra-
tion  because it facilitated learning at the subtask level rather than providing support at 

Figure 8.1
Screenshot of Design- a- Plant learning environment.
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an overall conceptual level of the task. Results generally supported  these hypotheses. 
Participants in the adaptive bottom-up and detailed conditions achieved higher levels 
of per for mance more quickly than participants in the top- down or general feedback 
conditions. That is, providing detailed feedback facilitated learning that was more 
efficient compared to providing general feedback. Further results showed that partici-
pants in the general condition performed significantly worse than  those in the adap-
tive bottom-up condition. Billings concluded that detailed feedback seemed to be the 
best option for designing feedback in simulation- based training environments and that 
the results support theories such as cognitive load theory. Specifically, the benefits of 
providing learners with specific rather than general feedback appeared to stem from 
telling learners directly what procedure they needed to follow rather than their having 
to recall this information themselves. This reduced cognitive load and made learning 
more efficient.

Serge, Priest, Durlach, and Johnson (2013) conducted a follow-up experiment to 
further examine feedback specificity properties in game- based learning environments. 
Participants in this experiment performed the same search- and- rescue training and 
transfer task as in Billings’s (2012) study described  earlier and received the same types 
of feedback (general, specific, adaptive top- down, adaptive bottom-up). In addition, 
Serge et al. allowed trainees in the general feedback condition to review the training 
manual at the end of each mission. They included this option to determine  whether 
individuals who took advantage of this opportunity (i.e., reviewing detailed procedures 
for performing the task) performed similarly to  those who received detailed feedback. 
Overall results showed that participants who received detailed feedback learned how 
to perform the task more quickly than  those  under other conditions. In addition, par-
ticipants in the general feedback condition who reviewed the training manual between 
missions performed just as well on the task as trainees who received detailed feed-
back. However, individuals who chose not to review the training manual performed 
as poorly as  those in the control condition who did not receive any feedback.  These 
results lend support for the power ful benefits of providing detailed feedback to learners 
through inner loop functionalities in game- based training environments.

In sum, the results of  these experiments show that process- oriented feedback 
improves learning outcomes for novice learners when compared to outcome- oriented 
feedback in game- based learning environments (Johnson et al., 2017). One explanation 
for  these observed benefits is that providing learners with error- specific information or 
explanative information reduces extraneous pro cessing and helps learners more eas-
ily identify the source of their misunderstandings. In turn, learners have more cogni-
tive resources to dedicate to essential pro cessing, which helps facilitate deeper learning 
(Johnson & Priest, 2014; Mayer, 2009).  These results suggest that intelligent game- based 
learning environments that offer detailed or error- specific feedback through inner- loop 
functions might more effectively support learning.
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What do we know about the effectiveness of feedback timing in game- based learning 
environments? In addition to feedback content, feedback timing can also influence 
learning in game- based environments. A major question facing designers of game- 
based learning environments is  whether to pre sent feedback to learners immediately 
 after they make a  mistake or  after a delay. As noted by Johnson et al. (2017), guidance 
for this question is rather mixed  because of conflicting theories and empirical findings. 
Proponents of immediate feedback suggest that providing feedback immediately  after 
errors prevents errors from being encoded during the acquisition phase of learning 
(Bangert- Drowns, Kulik, Kulik, & Morgan, 1991; Shute, 2008). The benefits of imme-
diate feedback have been demonstrated in cognitive tutors and step- based intelligent 
tutoring systems for two de cades (Anderson, Corbett, Koedinger, & Pelletier, 1995; Cor-
bett & Anderson, 1995). In  these environments, results show a strong learning effect 
associated with students who receive immediate feedback on step- based learning errors. 
Advocates for delayed feedback adhere to the interference- preservation hypothesis pro-
posed by Kulhavy and Anderson (1972), which asserts that errors interfere with encod-
ing corrective information when feedback is delivered immediately and that  people 
make fewer preservation errors if feedback is delayed.

A review of the feedback lit er a ture suggests that the question of when to provide 
feedback partly depends on the intended goal of learning. Immediate feedback seems 
to be more beneficial during the acquisition phase of learning (Anderson, Magill, & 
Sekiya, 2001; Corbett & Anderson, 1995; Dihoff, Brosvic, Epstein, & Cook, 2004), but 
delayed feedback may be better for promoting transfer. This general assumption has 
received some empirical support. For instance, Schmidt, Young, Swinnen, and Shapiro 
(1989) found that providing feedback immediately  after a trial produced higher per-
for mance during practice but led to worse per for mance during training transfer. Con-
versely, delayed feedback resulted in lower per for mance during the acquisition phase 
of training but better per for mance during a transfer phase.

Although one may imagine the benefits of both immediate and delayed feedback 
in game- based environments, relatively  little research has systematically evaluated 
feedback- timing policies in game- based learning. One notable exception is a study by 
Johnson, Priest, Glerum, and Serge (2013) that examined three feedback- timing policies 
for training procedural skills in a game- based environment. Participants  were trained to 
perform the same search- and- rescue task described in the study by Serge et al. (2013), 
but received feedback at one of three timing schedules: immediately  after an error 
(immediate condition), at a logical stopping point in the scenario (chunked condi-
tion), or at the end of the scenario (delayed). Although the results did not reveal any 
statistically significant differences between the timing conditions, data trends showed 
that participants in the immediate feedback condition performed slightly better than 
 those in the delayed or chunked condition. Importantly, the authors found that the 
delayed feedback groups reported higher levels of cognitive load, while the chunked 
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and immediate groups reported lower levels of cognitive load.  These findings led the 
authors to suggest that immediate feedback may help reduce extraneous cognitive load 
in game- based training environments but that more research is needed in this area 
(Johnson et al., 2013).

Van Buskirk (2011) found a similar benefit from providing immediate feedback in 
a simulation- based task designed to train military call- for- fire procedures. During the 
simulation, participants scanned simulated terrain for  enemy targets, identified targets, 
determined which threats to neutralize based on a set of prioritization rules, and then 
called in artillery fire to the position of the threat. The author manipulated the type 
of feedback participants received (outcome vs. pro cess feedback), when they received 
it (immediate vs. delayed feedback), and the modality in which the message was pre-
sented (visual vs. auditory feedback). An impor tant contribution of this study was that 
the author hypothesized that the effectiveness of the feedback delivery par ameters 
would depend on the pro cessing demands imposed by the task. More specifically, Van 
Buskirk hypothesized that  because learners  were performing a visual- spatial task, the 
relative effectiveness of feedback content (pro cess vs. outcome) would depend on when 
and how it was presented. She hypothesized that outcome feedback would be more 
effective if it was presented immediately  after an error, whereas pro cess feedback would 
be more effective if the message was delayed. She also hypothesized auditory feedback 
that was presented immediately would be most effective  because the message delivery 
modality would not suffer from the same level of pro cessing interference as a mes-
sage presented in the visual modality. Results showed that participants who received 
immediate, auditory, pro cess feedback outperformed  those receiving all other types of 
feedback on the target prioritization portion of the task. Although the results of the 
study did not support the hypothesized interaction, the author noted that a confound-
ing  factor caused by exposure to environmental feedback in the simulation may have 
attenuated the differences between the immediate and delayed feedback.  These results 
highlight the importance of considering the pro cessing demands of the feedback mes-
sage and task when designing feedback timing policies.

More recently, Landsberg, Bailey, Van Buskirk, Gonzalez- Holland, and Johnson 
(2016) found benefits from providing learners with delayed feedback in a similar type 
of simulation- based training system. This experiment investigated the relationship of 
feedback timing, feedback granularity, and environmental feedback in a simulation 
testbed designed to train individuals to estimate a ship’s  angle relative to their own line 
of sight. The task required participants to make accurate and timely decisions about 
the orientation of their ship relative to a simulated ship viewed through a periscope. 
Participants received feedback  either immediately  after each trial (immediate feedback 
condition) or  after  every 15  trials (delayed feedback condition). Results showed that 
participants in the delayed feedback condition made decisions more quickly than indi-
viduals in the immediate feedback condition. Furthermore, participants in the delayed 
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feedback condition also viewed feedback messages for longer than participants in the 
immediate condition did. Landsberg et al. (2016) concluded that by delaying feedback, 
participants had a chance to more actively pro cess the feedback message, which led to 
faster decision making and response times on subsequent  trials.

Based on the results presented  here, it may be that one of the primary benefits of 
delaying feedback is to provide students with a chance to reason about their own errors 
and self- correct before receiving feedback. Mathan and Koedinger (2005) found sup-
port for this type of reasoning in two studies that examined two feedback- timing poli-
cies in an intelligent tutoring system designed to teach novices how to write formulas 
in a spreadsheet. Although the study was not performed in a game- based environment, 
the results have implications for the design of game- based learning environments. Spe-
cifically, Mathan and Koedinger reasoned that the debate regarding when to give feed-
back should not be based on a  simple policy of feedback timing alone but rather on the 
model of desired per for mance. If the model of desired per for mance includes promoting 
metacognitive skills for error detection and correction, then learners should be allowed 
to exercise  these skills before receiving feedback. If the model of desired per for mance 
mimics that of an expert, then immediate feedback should be provided.  These research-
ers found that participants who  were allowed to make reasonable errors, self- evaluate, 
and correct their errors prior to receiving feedback performed better on tests of prob lem 
solving, conceptual understanding, transfer, and retention compared to learners who 
received immediate feedback.

As demonstrated in  these studies, feedback during the learning pro cess is clearly 
beneficial to individuals. Detailed pro cess feedback seems to provide the most benefits 
to learners (Billings, 2012; Johnson et al., 2013; Serge et al., 2013). However, guid-
ance on when to deliver feedback is mixed. Many decisions about  whether to delay 
feedback or provide it immediately seem to depend on moderating  factors, such as the 
type of task or the intended learning objectives (e.g., promoting retention vs. promot-
ing transfer). Of the studies we reviewed, none focused on narrative- centered learn-
ing environments or story- driven game- based learning environments, which have 
become increasingly prominent. Narrative- centered learning environments can serve 
as an ideal “laboratory” for investigating how to deliver feedback compared to other 
types of game- based environments  because of their story- driven design and tendency 
to utilize first-  or third- person perspectives through gameplay.  These environments 
offer an in ter est ing opportunity for integrating feedback within a believable world. 
Storyline characters could provide detailed feedback to learners during gameplay, and 
changes to the story line could provide a form of realistic environmental feedback 
(Johnson et al., 2017; Johnson & Lester, 2016). Understanding when and how to give 
feedback in  these types of games, as well as other forms of game- based learning envi-
ronments, continues to be an impor tant question that needs to be answered with 
empirical research.
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Support and Coaching in Game- Based Learning
Like feedback, support and coaching in game- based learning environments can take 
many forms. Some game- based environments include cues for guiding learners’ atten-
tion and se lection, some include features that provide support for organ izing and 
recognizing impor tant information, and  others provide support for reflection and inte-
gration of knowledge. Although it is generally accepted that including support is nec-
essary to prevent learners from floundering (Mayer, 2004), empirical research on the 
effectiveness of dif fer ent approaches and types of support in game- based environments 
is still somewhat sparse. Several notable examples, however, have addressed this ques-
tion using a value- added, cognitive consequences, or media comparison approach. We 
describe several of  these studies.

Supporting information se lection in game- based learning environments One of the 
challenges of situating learning in game- based environments is that  these environ-
ments offer a greater number of pos si ble paths and objectives to explore compared to 
traditional forms of instruction (e.g., Power Point slides). The higher level of interactiv-
ity and the story- driven design of some environments may impact the ways that learn-
ers select, or ga nize, and integrate information compared to static forms of multimedia 
instruction (Adams, Mayer, McNamara, Koenig, & Wainess, 2012; Mayer, 2009). To 
alleviate  these demands, some researchers have incorporated attentional cues within 
games to draw users’ attention  toward characters or critical ele ments that need to be 
explored. For instance, in Crystal Island (Lester et al., 2014; Lester, Rowe, & Mott, 2013), 
a game- based learning environment for  middle school microbiology education, visual 
cues such as highlighting are added to books and other articles that learners can inter-
act with (figure 8.2).  These cues are meant to direct learners’ attention  toward impor-
tant task- relevant cues while at the same time reducing extraneous load.

Similar forms of attentional support have been implemented in other inquiry- based 
learning games. For instance, Nelson, Kim, Foshee, and Slack (2014) used a value- added 
approach to investigate the efficacy of including visual cues in a narrative- centered 
virtual environment designed to assess scientific inquiry. The virtual environment 
involved gathering evidence and testing hypotheses regarding why a new flock of 
sheep was not thriving at a new farm. Learners played the role of a local scientist who 
could interact with virtual characters, explore the local landscape, and use a set of vir-
tual tools to collect data from sheep scattered around the farm. The study included two 
test conditions: (1) a visual signaling condition in which 3- D symbols (i.e., visual cues) 
hovered above characters and objects (e.g., sheep) with which learners could interact, 
and (2) a nonvisual signaling condition. To indicate that an object had been viewed, 
the status and color of each visual signal changed once a learner interacted with it. The 
authors hypothesized that by including visual cues, learners would be more likely to 
interact with relevant objects and experience decreased cognitive load. Study results 
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supported  these hypotheses. Specifically, participants in the visual signaling condi-
tion reported lower levels of cognitive load in a postgame survey. Furthermore, trace 
data from the game revealed that participants in the visual signaling condition inter-
acted with key objects more often (d = .34), collected more mea sure ments from sheep 
(d = .51), and took more notes in the electronic clipboard provided in the game (d = .48) 
than participants in the nonsignaling condition.  These results show that the signaling 
princi ple, which states that  people learn better when the design of interactive instruc-
tion includes visual or auditory cues that highlight the organ ization of essential mate-
rial to be learned, is applicable to game- based learning environments (Mayer, 2009). 
Applied to intelligent game- based learning environments,  these results suggest that 
one impor tant function of the inner loop is to highlight impor tant game ele ments or 
interactive objects. Providing this form of attentional support could reduce a learner’s 
extraneous pro cessing and  free working- memory resources to create a more engaging 
and meaningful learning experience.

Supporting knowledge organ ization In addition to facilitating the appropriate 
se lection of relevant objects in game- based learning, support can also be seamlessly 
embedded in game- based learning environments to help learners mentally or ga nize 
selected information into coherent  mental repre sen ta tions (Mayer, 2009). Examples 
include embedding into gaming environments concept graphs, graphic organizers, 
notebooks, and checklists that students can use to rec ord key pieces of information or 

Figure 8.2
Screenshot of Crystal Island game- based learning environment.
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self- reflect on what they currently know in regard to the prob lem they are trying to 
solve. Results of several studies exemplify how  these types of cognitive tools can pro-
mote learning gains and interest in game- based learning environments (Shores, Rowe, 
& Lester, 2011).

For instance, Nietfeld, Shores, and Hoffman (2014) examined  whether a structured 
note- taking tool embedded in a narrative- centered learning environment could effec-
tively scaffold students’ knowledge- organization pro cesses and promote learning out-
comes. Embedded in Crystal Island (Rowe, Shores, Mott, & Lester, 2011), the cognitive 
tool was a virtual diagnosis worksheet that learners could use to list patient symptoms, 
make notes, select likely  causes, and provide a final diagnosis as they tried to solve a 
mystery about what caused an illness outbreak on a virtual island (figure 8.3). Using a 
sample of 130  middle school students, Nietfeld et al. (2014) found that students who 
used the virtual worksheet more frequently reported higher levels of interest,  were 
more engaged, and showed higher learning gains than students who did not use this 
scaffolding. The authors summarized  these results by stating how critical it is for stu-
dents to use in- game cognitive tools to assist in off- loading and organ izing information 
pertinent for successful per for mance in  these environments.

Similar types of cognitive tools have been implemented in other interactive learning 
environments. For instance, BioWorld, an intelligent tutoring environment that trains 
medical prac ti tion ers on diagnostic reasoning across an array of simulated exercises, 
uses embedded cognitive tools to help students externalize and evaluate their reasoning 

Figure 8.3
Diagnosis worksheet in Crystal Island.
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pro cesses as they diagnose patient cases and illnesses (Lajoie, 2009).  These tools are 
designed to support monitoring pro cesses and provide help- seeking resources com-
monly used during medical diagnostic events (Lajoie, 2009). One such tool embedded 
in the environment is termed the “evidence palette,” as it provides a notebook inter-
face to rec ord information deemed impor tant for supporting a diagnosis. McCurdy, 
Naismith, and Lajoie (2010) found that experts and novices used the tool differently, 
with experts collecting more evidence during the investigation phase of the game. 
Additional studies have found that tool usage is an impor tant predictor of problem- 
solving per for mance in inquiry- based learning environments (Liu et al., 2009).

Graphical or ga nizer and concept matrices are another set of cognitive tools fre-
quently found in game- based learning environments.  These instructional scaffolds can 
be used to help learners self- test and self- reflect on their current state of knowledge 
(Rowe, Lobene, Mott, & Lester, 2013). Crystal Island includes concept matrices that 
students can use to reinforce and regulate their understanding of microbiology princi-
ples. Preliminary findings of student usage activities have suggested that students’ con-
cept matrix per for mance is predictive of posttest knowledge scores, suggesting that this 
form of cognitive support plays an impor tant role in helping students learn impor tant 
scientific concepts (Min, Rowe, Mott, & Lester, 2013). In applications such as Betty’s 
Brain, students use concept maps to represent their understanding of earth science 
topics such as food chains, photosynthesis, or waste cycles. Students receive feedback 
on the correctness of their concept linkages through their interactions with the virtual 
agent in the platform. This support was found to improve students’ own reflective 
be hav iors (Jeong & Biswas, 2008).

Empirical evidence also suggests that embedding subproblems (e.g., miniquests) 
within a game- based learning environment can support more efficient learning com-
pared to asking learners to solve a more complex activity (Shores, Hoffman, Nietfeld, 
& Lester, 2012). As a form of cognitive support,  these more proximal goals have the 
potential to scaffold the learning pro cess by breaking down learning objectives into 
cognitively manageable units, providing useful, frequent feedback, and maintaining 
motivation and the novelty of the experience (Shores et al., 2012).

Taken together,  these results show the promise of including cognitive tools in 
game- based environments to support learning outcomes. Cognitive tools can be used 
to offload and or ga nize information that is pertinent to successful per for mance in 
the environment. Perhaps more importantly, cognitive tools can help prompt self- 
regulatory be hav iors among learners. Self- regulation has been identified as an impor-
tant component that supports learning in game- based environments. Learners with 
high self- regulatory skills are more likely to set goals, check their pro gress against  these 
goals, and adjust their strategy when their current level of per for mance is not aligned 
with their goals (Azevedo, Behnagh, Duffy, Harley, & Trevors, 2012). Cognitive tools 
can also serve as an indirect method for reminding learners to engage in specific tasks 
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and facilitate metacognitive and self- regulatory learning pro cesses (Lester, Mott, Robi-
son, Rowe, & Shores, 2013; Roll, Wiese, Long, Aleven, & Koedinger, 2014).

Supporting knowledge integration and task per for mance In addition to directing 
a learner’s attention and supporting knowledge organ ization, support can be used in 
game- based learning environments to provide explicit guidance to learners as they 
perform a task. Such support can be instantiated in the form of hints, prompts, pumps, 
and elicitation statements designed to provide learners with reminders about the goals 
of the task, hints about how to solve a prob lem, or prompts to elaborate an answer, 
self- explain a concept, or self- reflect on their current level of understanding (Aleven & 
Koedinger, 2002; Lester, Mott, et al., 2013; Roll et al., 2014). In traditional step- based 
intelligent tutoring systems, such as  those designed to teach mathe matics or physics, 
students can request hints as they work  toward solving a prob lem. The first hint may 
offer a “nudge” to remind students about a concept they should apply. The second hint 
may be more directive. The final hint— called the bottom- out hint— may provide the 
answer. The tutor may also provide hints proactively. Intelligent game- based learning 
environments that incorporate intelligent tutoring capabilities offer similar forms of 
support, and  there is growing evidence that  these interventions can have a positive 
impact on learning.

For instance, BiLAT, a game- based instructional system designed to teach cultural 
awareness and bilateral negotiation skills, has been shown to improve the negotiation 
skills of novice negotiators during meetings (Kim et  al., 2009). BiLAT requires that 
learners interact with virtual characters (e.g., a local doctor) in a situated story line to 
achieve a par tic u lar outcome (e.g., move the local clinic). Prior to engaging in negotia-
tions, learners complete an initial research and preparation phase, in which they gather 
information about the characters they  will interact with and learn culturally appropri-
ate negotiation tactics.  After this initial phase, learners are placed in narrative- driven 
scenarios where they must successfully negotiate with virtual characters to achieve 
their mission goals. Learners select speech acts or actions from a menu, and the virtual 
characters react to  these se lections. The menu serves as a scaffold for novice users who 
may not be able to generate  these actions on their own. During negotiation meetings, 
the system provides students with hints regarding appropriate actions. Hints are trig-
gered according to the phase of the meeting (e.g., greeting and rapport phase, business 
phase), the list of available actions, and the learning objective. Hints start by offer-
ing general information in regard to the learning objective (e.g., begin with a sign of 
re spect) and then pro gress to more detailed and corrective hints and suggestions if the 
trainee does not demonstrate competence during the negotiation (e.g., “take off your 
sunglasses”). The coach also offers feedback based on a student’s most recent action. 
In an evaluation of BiLAT, Kim et al. (2009) found that novice negotiators who trained 
with BiLAT over a relatively short period increased their negotiation skills as mea sured 
through pretest and posttest learning gains in a situational judgment test.
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Nelson (2007) investigated the impact of an individualized guidance system that 
was embedded in an educational multiuser virtual environment called River City. 
The guidance system was designed to help students solve scientific inquiry prob lems. 
River City depicted a late nineteenth- century town that included shops, a library, an 
elementary school, and other institutions. Upon entering the town, students could 
interact with virtual characters, digital objects, and avatars of other students. Students 
 were required to explore dif fer ent sections of town and develop hypotheses about why 
residents  were ill. Students could view objects in the virtual world, such as historical 
photos, books, and charts, and could use interactive tools. They could also interact 
with virtual characters to learn more about the town and potential  causes of illness. 
The guidance system compiled a cumulative model of student interactions with  these 
objects and used this information to provide students with personalized support and 
guidance. For instance, when a student initially interacted with an object, the system 
would provide a default set of questions or prompts that would provide guidance for 
the student. If the student returned to the same object  after interacting with other 
objects, it would provide more tailored guidance and reflection- oriented prompts based 
on the student’s previous actions. In a sample of approximately 290  middle school 
students, Nelson (2007) tested the impacts of three levels of support within the game—
no guidance, extensive guidance, and moderate guidance—on learning outcomes. Stu-
dents in the extensive guidance condition could view three guidance messages per 
predefined object, while participants in the moderate guidance condition had access 
to only one guidance message per object. Initial results showed that students who had 
access to individualized guidance did not score better on mea sures of learning than 
students in the no guidance condition. The authors found that although students had 
access to guidance, they viewed on average 12 to 15 messages out of a total of more 
than 200 in the moderate condition and 600 in the extensive condition. However, post 
hoc analyses showed a significant linear relationship between frequency of guidance 
usage and test score gains, suggesting that individuals who  were more frequent users of 
the guidance learned more from the game.

Additional examples of support and coaching in game- based learning environments 
can be found in several studies that have used Crystal Island. McQuiggan, Rowe, Lee, 
and Lester (2008) used a media comparison approach to investigate  whether story- 
driven content included in Crystal Island supported student learning. The authors com-
pared two versions of Crystal Island against a traditional form of multimedia- based 
instruction. The full version of Crystal Island included a rich story line about patient 
illness, complex character interrelationships, and interactions. The minimal version 
contained a trimmed- down version of the storyline that was minimal enough to sup-
port only the problem- solving scenario. Results showed that students in the full and 
minimal conditions achieved learning gains, but they did not learn as much as stu-
dents who received traditional multimedia instruction covering the same curricular 
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material. However, further analyses revealed that students who interacted with Crystal 
Island reported high levels of self- efficacy, presence, and interest in the topic compared 
to  those in the traditional condition.  These findings shed light on the motivational 
benefits of narrative- centered learning.

In a  later study, Rowe et al. (2011) used a revised version of Crystal Island and found 
improved learning gains compared to the study by McQuiggan et al. (2008). Specifi-
cally, learners showed higher levels of in- game per for mance, presence, and situational 
interest in the game. The improved learning gains  were believed to be associated with 
several key additions that resulted in a more immersive and supportive learning experi-
ence.  These additions included an expanded diagnosis worksheet that learners could 
use to rec ord, or ga nize, and integrate information, a tighter coupling between the 
narrative and microbiology curriculum, and a new activity in which students actively 
labeled parts of cells.  These items  were meant to provide learners with more scaffolding 
during the game. While additional research is needed to determine the benefits of  these 
features systematically, the results show a promising trend  toward improving student 
learning and student affect in game- based learning.

Support Offered through Pedagogical Agents
Pedagogical agents are another form of scaffolding and support found in many game- 
based learning environments. A growing body of research has shown that pedagogical 
agents can benefit learning experiences (Schroeder, Adesope, & Gilbert, 2013). Pedagog-
ical agents are interactive computer characters that “cohabitate learning environments 
with students to create rich, face- to- face, learning interactions” (Johnson & Lester, 
2016, p. 26). They are often used in inner- loop functions of intelligent game- based 
learning environments to mimic many of the same activities performed by  human 
tutors: they evaluate a learner’s understanding through interactions, ask questions, 
offer encouragement, and give feedback. They can also pre sent relevant information 
and hints, offer examples, and interpret student responses (Johnson, Rickel, Stiles, & 
Munro, 1998). Examples of pedagogical agents include Steve, a lifelike agent designed 
to help students learn equipment maintenance and device troubleshooting procedures, 
and Herman the Bug, a cartoon- like agent designed to help students learn botanical 
anatomy. Steve can demonstrate skills to students, answer student questions, and give 
advice if the students run into difficulties (Rickel & Johnson, 1999). Herman the Bug 
watches students as they build plants, offering them assistance and problem- solving 
advice (Elliott, Rickel, & Lester, 1999). Pedagogical agents are particularly effective 
when they offer support, coaching, and guidance that encourage students to engage in 
generative or active pro cessing (Moreno & Mayer, 2005).

Virtual learning companions are a special class of pedagogical agents that take on 
the persona of a knowledgable peer and are designed to share the learning experience 
with the student (Kim & Baylor, 2006; Ryokai, Vaucelle, & Cassell, 2003). Unlike virtual 
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tutors,  these agents do not serve a teaching role in the learning environment. Instead, 
they are meant to experience learning tasks alongside the learner and serve as near 
peers.  These companions can support learning through social modeling (Ryokai et al., 
2003), and they have the ability to improve self- efficacy by reducing frustration (Buf-
fum, Boyer, Wiebe, Mott, & Lester, 2015), boosting confidence and empathizing with 
the student (Woolf, Arroyo, Cooper, Burleson, & Muldner, 2010). Thus,  these agents 
can offer social- emotional support, which can in turn improve student motivation in 
game- based learning environments.

Support Offered through Teachable Agents
Teachable agents are interactive computer characters that are designed to offer sup-
port in game- based learning environments. Students teach the teachable agent about 
a subject and assess the agent’s knowledge by asking it to solve prob lems or answer 
questions (Biswas et  al., 2005). The teachable agent uses artificial intelligence tech-
niques to answer questions. The feedback the student receives by observing the teach-
able agent’s per for mance helps them discover gaps in the agent’s knowledge. Students 
can use this feedback to provide remedial tutoring to the agent, similar to what a real 
 human tutor does with a struggling student. Teachable agents capitalize on the experi-
ence of learning- by- teaching and in  doing so allow students to engage in three critical 
activities that promote learning: knowledge structuring (students acting as tutors or ga-
nize their own knowledge), motivation (students acting as tutors take responsibility for 
learning the material), and reflection (students acting as tutors reflect on how well their 
ideas  were understood and used by the tutee) (Biswas et al., 2005; Chin et al., 2010). 
Studies have shown that tutors and teachers often engage in  these actions during and 
 after the teaching pro cess in order to better prepare for  future learning sessions (Chi, 
Siler, Jeong, Yamauchi, & Hausmann, 2001).

Perhaps one of the most well- proven and extensively researched teachable agents 
is Betty’s Brain, which was developed by researchers at Vanderbilt University and used 
in  middle schools to help students learn about earth science (Leelawong & Biswas, 
2008). In Betty’s Brain, the agent has no initial knowledge and is taught about a subject 
through peer tutoring. Students teach Betty about a par tic u lar topic (such as a river 
ecosystem) using concept map repre sen ta tions. As students teach Betty, they can ask 
her questions to see how much she has understood. Once taught, Betty applies qualita-
tive reasoning techniques to answer questions related to the subject. Students can also 
ask Betty to take a quiz. Mr. Davis, a mentor agent within the learning environment, 
grades the quiz and provides hints to help students debug and make corrections in 
Betty’s concept map. This cycle of teaching and assessing continues  until the virtual 
tutee performs up to standards.

The idea of learning- by- teaching is both intuitively appealing and one that has 
garnered support in the research lit er a ture. Research on the effectiveness of teachable 
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agents indicates that students who tutor teachable agents exhibit higher levels of moti-
vation and learning compared to students who passively receive training from an arti-
ficial agent (Leelawong & Biswas, 2008). For instance, Leelawong and Biswas (2008) 
conducted a study comparing two versions of a teachable agent system— one baseline 
version and a second version that included self- regulated learning princi ples and pro-
vided metacognitive hints to students—to a condition in which students  were taught 
by a pedagogical agent. The findings indicated that students in the two learning- by- 
teaching conditions learned more than students in the pedagogical agent condition 
and that  these benefits persisted in a transfer study. Specifically, students who learned 
via learning- by- teaching made greater effort and had better success in learning material 
on their own compared to students who received instruction.  These results highlight 
the benefit of supporting generative pro cessing through teachable agents.

What Are the Implications for the Design of Game- Based Learning?

The research discussed in this chapter has several implications for the design of game- 
based learning. Instructional support such as attentional cues, cognitive tools, hints, 
prompts, and feedback offer significant promise for helping learners select relevant 
objects and information in the learning environment, or ga nize this information into 
coherent  mental structures, and facilitate meaningful learning, while at the same time 
off- loading working memory and promoting engagement.

Empirical evidence suggests that attentional cueing and visual signaling are two 
ways to help learners recognize and select essential material in game- based learning 
environments (Mayer, 2010).  These cues help to direct learners’ attention  toward rel-
evant objects and locations in a learning environment and reduce extraneous cogni-
tive load. This advice follows the signaling princi ple of multimedia instruction (Mayer, 
2009). Cognitive tools are another critical form of support in game- based learning, 
particularly  those that focus on inquiry and prob lem solving. Cognitive tools are used 
to replicate the externalization of knowledge by providing tools and pro cesses that are 
inherently used by an expert when solving a prob lem (Lajoie, 2009). They assist learners 
in solving prob lems and organ izing relevant information, with the intended benefits of 
reducing cognitive load and scaffolding the problem- solving pro cess. Evidence shows 
that learners who use cognitive tools often produce better scores in learning games 
than  those who do not take advantage of this support (Chin et al., 2010; Lajoie, 2009; 
Nietfeld et al., 2014). Furthermore, research shows that prompts and hints that encour-
age learners to self- reflect and engage in generative pro cessing, and feedback messages 
that provide principle- based explanations for errors, are particularly effective for pro-
moting learning in game- based learning environments.  These messages can prompt 
students to engage in metacognitive pro cessing that is impor tant for learning, such as 
elaboration, self- explanation, and self- checking (Aleven, Stahl, Schworm, Fischer, & 
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Wallace, 2003; Azevedo & Hadwin, 2005; Roll et al., 2014).  These forms of support may 
be especially impor tant in narrative- centered learning environments where students 
participate in story- based educational experiences and must demonstrate reasoning 
and other higher- order analytical thinking and reasoning skills to achieve the goals of 
the game (Lester, Mott, et al., 2013).

When implementing feedback, coaching, and support, designers should be cautious 
not to overload a learner’s already  limited pro cessing resources and capacity. Designers 
should also take into account a learner’s evolving level of knowledge as they deliver 
and provide support. Ideally, the level of support offered by the inner loop of a game- 
based learning environment should be tailored to a learner’s evolving competence. For 
instance, a novice student might begin an exercise with a high level of coaching and sup-
port, but over time the level of support should decrease as the student’s level of mastery 
increases,  until the student is performing the task on his or her own, which is the pro cess 
of fading (Wood & Wood, 1999). One of the challenges for game designers is to determine 
what type of support to offer and when to make it available to learners. In addition, 
research also shows that using pedagogical agents and teachable agents as a mechanism 
for offering support and promoting reflection and self- explanation can promote learning 
while at the same time providing learners with educational and social- emotional sup-
port.  These instructional features can be tightly intertwined in game mechanics to keep 
the learner on task, promote reflection, and reduce frustration and confusion.

What Are the Limitations of Current Research, and What Are some Implications for 
 Future Research?

While  there is growing evidence suggesting that game- based learning environments 
can serve as an effective medium for learning, a key prob lem posed by game- based 
learning is how to support learners most effectively. Feedback, support, and coaching 
can be implemented in a variety of ways. Identifying the optimal methods, modali-
ties, and timing of delivery is critical for supporting learners in game- based learning 
environments.  There is a significant need to investigate how learners use cognitive 
tools in game- based learning environments. Exploring game trace log data and using 
eye- tracking mea sures are promising directions for identifying effective learner be hav-
iors (Taub et al., 2017).  There is also a lack of research examining how cognitive tools 
could be dynamically tailored to meet individual needs (Rowe et al., 2013). Research on 
the expertise reversal effect and cognitive load theory suggests that scaffolding should 
be gradually removed as learners become more proficient in a topic (Kalyuga, 2007). If 
scaffolding remains at a fixed level, it could cause extraneous load for learners who are 
more experienced. Following this theory, one could reasonably predict that too much 
structure and support could result in diminished learning gains for knowledgeable stu-
dents. Fading support can be implemented in a variety of ways. For example, in the 
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case of a diagnosis worksheet, learners could be provided with minimal structure and 
be required to fill in sections with impor tant information in the form of freeform text 
rather than selecting multiple- choice options. Alternatively, learners could be required 
to specify how the worksheet should be designed and then complete the form them-
selves (Rowe et al., 2013).

Another limitation in the lit er a ture is that most studies mea sure retention and trans-
fer immediately  after a student completes a learning task. In  doing so,  there is no way 
to determine the lasting impact of the intervention on learning. As noted in the feed-
back lit er a ture, approaches that promote immediate retention and transfer may not 
foster delayed transfer and vice versa.  Future research should address this by examin-
ing per for mance on delayed retention or transfer tasks as well as immediate tasks. This 
would provide evidence on potential moderating  factors associated with certain forms 
of support and feedback.

In line with  these suggestions, another promising ave nue for  future research is to 
explore boundary conditions on the effectiveness of feedback, support, and coaching. 
A guiding question for this line of research is: does the effectiveness of certain forms 
of support depend on the type of game or other learner- based  factors (e.g., gender, 
expertise, personal interests)? Empirical evidence suggests that males and females use 
cognitive tools and pedagogical agents differently (Nietfeld et al., 2014). Pezzullo et al. 
(2017) found that boys experienced higher  mental demand compared to girls when 
they interacted with a virtual agent that was embedded within the story line of a game- 
based learning environment.  These gender effects held even  after controlling for prior 
knowledge and video game experience.

Furthermore, with advancements in artificial intelligence, multimodal sensors, and 
learning analytics,  there are a multitude of emerging technologies that could be used 
to investigate the impact of feedback, support, and coaching on learning outcomes. 
For example, we are seeing the appearance of multimodal models of goal recognition 
that can accurately recognize the goals that students are pursuing when interacting 
with game- based learning environments (Baikadi, Rowe, Mott, & Lester, 2014; Ha, 
Rowe, Mott, & Lester, 2014; Min, Ha, Rowe, Mott, & Lester, 2014; Min, Mott, et al., 
2017; Min, Mott, Rowe, Liu, & Lester, 2016), approaches for using multichannel data to 
assess in- game per for mance during gameplay (Taub et al., 2017), and student modeling 
techniques that utilize facial expression recognition (Sawyer, Smith, Rowe, Azevedo, & 
Lester, 2017). Perhaps even more enticing is the prospect of dynamically customizing 
gameplay experiences with advanced computational models utilizing deep reinforce-
ment learning (Wang, Rowe, Min, Mott, & Lester, 2017) and techniques for balancing 
learning and engagement with multiobjective reinforcement learning (Sawyer, Rowe, 
& Lester, 2017).  These customized experiences can be created with both outer- loop and 
inner- loop functionalities of intelligent game- based environments to provide learn-
ers with challenging scenarios while at the same time offering tailored support for 
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individual learners.  These are exciting times for game- based learning research, and the 
next few years are likely to see the appearance of the next generation of theoretically 
driven, empirically based approaches to support, feedback, and coaching.
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