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Digital game-based learning (DGBL) environments are increasingly utilized to facilitate classroom 

instruction. For the game in our study, a formative stealth assessment tool, in the form of an intelligent 

tutoring system (ITS) is guided by evidence-centered assessment design (ECD). Cognitive Load Theory 

and ECD are utilized as diagnostic tools to analyze upsurges in hints delivered by the ITS and inform game 

design revisions that will promote improved learner support and learning outcomes.

 

 

INTRODUCTION 
 

 Since technology has become ubiquitous in educational 

settings, it has been utilized as a tool to provide students with 

meaningful learning experiences. This new avenue for 

education has been observed in the progression of 

gamification of learning objectives (Shute, 2011). With the 

intention of providing a motivating and engaging framework 

for learning, the use of game design in the development of 

educational pedagogy has proved effective (Hosseini, Hartt, & 

Mostafapour, 2019). The current evolution of gaming 

technologies is able to harvest real-time user data to create 

adaptive learning environments. For example, gaming 

environments embedded with intelligent tutoring systems 

(ITS) assess student knowledge while providing active 

guidance during gameplay. Embedded within the framework 

of the ITS, evidence-centered assessment design (ECD) is 

utilized as a formative stealth assessment tool (Shute, 2011) to 

inform learner support tools such as an ITS. A current 

challenge from a UX perspective is how active guidance 

works in concert with the overall learning context, including 

the individual’s cognitive state, to promote learning. 

Therefore, it is important to understand the limitations of our 

human cognitive architecture to inform both the game design 

and its underlying intelligent analytic tools. We used cognitive 

load theory (Sweller, 2011) in addition to evidence-centered 

assessment design (ECD) (Mislevy & Hartel, 2006) to explore 

new methods for better understanding how game design 

decisions affect student learning opportunities.  

 

Cognitive Load Theory  
 

Cognitive load theory (CLT) is an instructional 

theory based on aspects of human cognitive architecture as it 

is integrated with instructional design and learning procedures 

(Sweller, 2011). As it applies to this theory, cognitive 

architecture has two essential facets, both of which are 

interrelated. First recognizing working memory, our conscious 

processor of information, has limited capacity and duration 

when dealing with novel, unorganized information. Second 

being long term memory (LTM) as the unlimited storage of 

varying cognitive schemas (knowledge structures) that 

categorize information for intended use (Kalyuga & Liu, 

2015). From this, cognitive load could be defined as a 

multidimensional construct representing working memory 

resources required for a given learning task and is influenced 

by a students’ level of prior knowledge towards elements 

related to the task. Most crucially is how students’ cognitive 

knowledge structure and the structure of the learning task 

affect the working memory during the time of the task at hand 

(Windell, Wiebe, Converse-Lane, & Beith, 2006). 

Cognitive load theory distinguishes two main types 

of cognitive load: intrinsic and extraneous (Kalyuga & Liu, 

2015). Intrinsic cognitive load accommodates the relevant 

information components needed to achieve learning goals for 

the task at hand and is dependent on the level of learner prior 

knowledge. Learning tasks can be defined by the number of 

informational (instructional) elements which the learner needs 

to manage in working memory. The integration and processing 

of these instructional elements in working memory is referred 

to as the level of element interactivity in working memory. A 

higher level of expertise provides schemas that can chunk 

these instructional elements, lowering the element interactivity 

and thus the load on working memory. In contrast, extraneous 

cognitive load exists in cases of sub-optimal instructional 

design. This can occur in instances where instruction design 

requires learners to engage in cognitive processes that are not 

required (irrelevant) to learning. It can also occur when the 

learning task is not appropriately matched to the ability level 

of the learner.  

Sources of cognitive load have various implications 

within instructional environments. When applied, cognitive 

load theory provides a lens to examine effects of learner prior 

knowledge, information representations (e.g., graphic versus 

text), task conditions with the represented information, as well 

as how information is arranged over space and time in the 

learning environment (Kalyuga, 2007). Within this scope, the 

variability effect acts as an implication of cognitive load when 

scaffolding instruction to provide students with target 

information in multiple representations and learning task 

types. The variability effect suggests that high variability 

better facilitates learning in comparison to tasks with less 

variability (Paas and van Merriënboer 1994). However, 

interaction with degree of expertise suggests that levels of 

variability should be tailored to learner expertise (Likourezos, 

Kalyuga, & Sweller, 2019). That is, more knowledgeable 
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learners benefit from high variability problems because their 

level of element interactivity of the conceptual components of 

the task is relatively low. Thus, there is availability in working 

memory capacity to handle the raised element interactivity 

related to the variability of task and representational form of 

the instructional materials. Conversely, novice learners 

contend with high load from both the conceptual components 

of the task and the task variability, leading to an overload of 

working memory (Likourezos, Kalyuga, & Sweller, 2019). 

This mismatch of learner to learning task can be considered an 

extraneous load.  

 When applied correctly, the variability effect should 

consider the student’s level of expertise–thus level of intrinsic 

load–in the problem-solving tasks. Sound game design will 

leverage students’ current knowledge by utilizing 

representations and tasks that use this knowledge as a 

foundation to build and reinforce it (Hosseini, Hartt, & 

Mostafapour, 2019). Following cognitive load theory, when 

learners are provided with external guidance, such as from an 

ITS, if this information aligns well with the task at hand, it can 

provide both an immediate learning opportunity and 

scaffolding that lowers intrinsic load and brings the task 

within range of working memory capacity. However, 

misdirected ITS support presents representations of 

information that do not align with existing knowledge 

structures, requiring the learner to mentally coordinate 

instructional elements not germane to the learning task, thus a 

form of extraneous load (Kalyuga, 2007). 

Additionally, physical design elements should be 

designed and displayed in space and time in ways that 

minimize extraneous load. Separation of related elements may 

hinder performance as it poses a source of extraneous load 

(Kalyuga, 2007). As elements of information need to be 

processed simultaneously to complete the task, separation in 

display leaves learners to hold units of information in working 

memory while other units must be searched for, attended to, 

and processed. Suggesting that close proximity of the display 

elements would alleviate extraneous cognitive load, allowing 

learners to attend to relevant information simultaneously.  

These instructional design principles were explored 

within each of their examples in the results of this study, as 

their violations result in extraneous load for the student. 

Additionally, sources of extraneous load are assessed based on 

whether instances occur momentarily or continuously 

throughout the game. Alongside these examinations, 

considerations of the scaffolded support provided by an ITS 

and guided by the ECD frameworks involved are valuable in 

making conclusions regarding seemingly problematic areas, as 

they may work with or go beyond the confines of cognitive 

load theory.  

 

Evidence-centered assessment design (ECD)  
 

Analysis of trace data of student behaviors are guided 

by an evidence-centered design (ECD) framework for 

assessing student knowledge (Mislevy & Hartel, 2006). At the 

heart of this framework is the idea that assessment is an 

evidentiary argument of student learning from imperfect 

evidence. ECD identifies different components, or models, 

used in the development of assessments. Most germane to this 

study is 1) the task model, which defines learning tasks 

designed to allow students to demonstrate their knowledge of 

key skills or concepts; and 2) the evidence model, which uses 

student behaviors in the learning environment to provide 

evidence of their mastery (or lack thereof) of these skills and 

knowledge components. Evidence is accumulated over 

multiple tasks as to whether a student is likely to have 

demonstrable mastery. This process is probabilistic and 

acknowledges that students may or may not be able to 

demonstrate mastery in differing contexts. This premise is of 

particular interest to our study. Embedded within the design 

framework of an ITS, ECD is utilized as a formative stealth 

assessment tool (Shute, 2011). Stealth assessment is a process 

embedded in instructional environments in which learner 

behavioral data is gathered continuously during gameplay. In 

efforts to further utilize this data and create robust game-based 

learning systems, ECD guides the mapping of learning goals 

to game activity, identifying evidence of learning mastery 

within the gameplay. This incorporation of ECD elicits the 

idea that student knowledge can be assessed through synthesis 

of multiple forms of imperfect evidence across elements of 

play within the game. An ITS can, in turn, utilize ECD-guided 

evidence data to drive its tutorial engine. For example, 

evidence that students have not mastered a concept could 

trigger delivery of hints to the student to help scaffold them 

through the mastery of a new concept or skill. 

When a gameplay element is mapped via ECD to 

evidences of mastery there is an implied relationship with the 

cognitive load a student would experience. Interpreted through 

cognitive load theory, a student who is able to demonstrate 

mastery of a concept would experience low intrinsic load, 

assuming that high extraneous load has not interfered with 

their ability to utilize existing schemas of related knowledge. 

Thus, lack of demonstration of mastery could be due to high 

extraneous load from poor design of the game element rather 

than evidence of lack of knowledge/skill needed to 

demonstrate mastery. In such a case, an ITS could incorrectly 

interpret evidence and deliver inappropriate hints to a student 

already subjected to high extraneous load.  

In an effort to inform the design of DGBLs, these 

aspects of cognitive load theory, coupled with the ECD 

framework, were used as a diagnostic tool in an examination 

of game tasks (challenges) that evoke abnormal upsurges of 

hint deliveries within Geniventure. These challenges were 

inspected with regards to the target concepts for learning and 

whether high intrinsic or extraneous load is the likely cause of 

this spike. For the purpose of this paper, we focused on 

sources of extraneous cognitive load, as it is counterproductive 

to learning and caused by poor instructional design. In 

addition, alignment of the ECD-derived evidences of mastery 

to actual behaviors were also examined since incorrect 

evidence definition could be a source of erroneous hint 

delivery and thus its own source of extraneous load. Incorrect 

alignment could indicate there is, in fact, no cognitive load 

issues. Thus, applying both a cognitive load perspective and 

inspection of the ECD mapping of evidences can help improve 

game design and ITS performance and, ultimately, learning 

outcomes.  
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RESEARCH QUESTION 
 

 For this study, informed by cognitive load theory and 

ECD, we investigated the following research question: How 

do trajectories of student hint data and subsequent analysis of 

game design elements inform the design of a digital game-

based learning environment? 

 

METHODS 

Participants 

 A total of 394 secondary level students participated in 

this study. The students were recruited through their science or 

biology teachers who agreed to use the Geniventure game as 

part of their curricular materials to teach genetics concepts. 

Demographically, the participants varied in terms of gender, 

grade level, English language learner (ELL) status, and 

ethnicity. Regarding grade level, half of the participants were 

in their tenth grade (50%), 19% in ninth grade and the 

remaining 31% were seventh, eleventh, and twelfth graders. 

The participants were equal in terms of gender distribution, 

with 47% identified as female and 46% as male, with the 

remaining 7% not providing gender information. Of the total 

participants, 47% were Non-Hispanic White, 17% 

Black/African-American, 8% Latinx, and the remaining 28% 

gave Other as their response. Last, 11% indicated they were 

ELL.  

Materials 

 

Geniventure is the product of a NSF-funded project 

to support student learning in genetics using epistemic 

oriented scientific practices. The curriculum was developed on 

the foundation that genetics can be taught as an active, 

experimental science. Geniventure is a DGBL that engages 

students in a greater story narrative as they solve challenges 

around breeding baby dragons (drakes), who can inherit 

multiple traits (e.g. wings, horns) through various allele 

combinations. The game features both genotypic (display of 

the chromosome) and phenotypic (observable physical 

characteristics of genes) representations of the drakes. While 

the drakes are fictional, these breeding practices are designed 

to reflect accurate, real-world genetics. Students are tasked 

with problem-solving challenges as their learning is supported 

through immediate feedback based on their actions within the 

game in the form of ITS-driven hints and remedial challenges. 

 

Data analysis 

 Analysis of trace data of student behaviors against an 

inventory of genetics concepts was guided by an ECD 

framework for assessing student knowledge through a series 

of student actions. This analysis provides the evidence used by 

the ITS to determine when hints are delivered to students. In 

each of the challenges throughout the game, learner behavior 

is associated with evidences of mastery of specific concepts. 

Thus, a series of actions in a challenge that provides negative 

evidence of mastery prompts delivery of a text-based hint 

relative to that concept. Challenges could contain from one to 

three levels of hints. Therefore, to analyze the number of hints 

delivered by challenge, normalized hint scores were computed 

to make the hint data comparable. Normalized hints scores 

were calculated by dividing the average hint for each 

particular challenge to the maximum number of hints in that 

particular challenge. This resulted in normalized hint scores 

ranging from 0 to 1, indicating a range from lack of hint 

delivery to frequent hint delivery. For the purposes of this 

analysis, concepts tracked by the ITS were selected for 

examination based on their prevalence throughout the game 

(Table 1). The computed normalized hint scores were then 

grouped based on the concept they measured, and graphed to 

visualize the trend of hints delivered over the course of 

challenges associated with a particular concept. The 

longitudinal alignment of hint score per challenge for the 

given concept was arranged by challenge along the x-axis, and 

normalized hint scores on the y-axis. Strong upsurges in hint 

delivery were visually identified in the graphs. The strongest 

of these upsurges were selected for further analysis.  

Table 1. Concepts examined  

Concept In Game Applications 

Sex 
Determination 

(LG1.A3) 

Females have two X chromosomes. Males have one X 

and one Y. 

Simple 
Dominance 

(LG1.C2a) 

Only one dominant allele is needed to produce the 

dominant trait. 

Recessive Traits 

(LG1.C2b) 

Two recessive alleles are needed to produce a recessive 

trait. 

Incomplete 

Dominance 
(LG1.C3) 

For some traits, both alleles will have some effect, with 

neither being completely dominant. 

 

RESULTS AND DISCUSSION 

Variability Effect 

An analysis of game-based data identified three 

upsurges in hint trajectories that provide an opportunity to 

discuss explanations, guided by ECD and cognitive load 

analysis, that inform the design of DGBL environments.  

 

 
Figure 1. Hint Trajectories for Sex Determination Concept 

 

An abnormal upsurge of hints delivered within 

Challenge 2.1.1 (see Figure 1), calls for an examination of this 

area of the game, referred to as the Hatchery. Prior to this 

challenge, students were provided with multiple avenues to 

determine sex: examining genotypical evidence (abstract 

C
op

yr
ig

ht
 2

02
0 

by
 H

um
an

 F
ac

to
rs

 a
nd

 E
rg

on
om

ic
s 

S
oc

ie
ty

. A
ll 

rig
ht

s 
re

se
rv

ed
. 1

0.
11

77
/1

07
11

81
32

06
41

19
2

Proceedings of the 2020 HFES 64th International Annual Meeting 828



visual representation of a gene display), a female to male 

control switch, or by the visual attribute (phenotypical) of a 

neck flap that only appears in male drakes (see Figure 2). 

Following this challenge, differing chromosomes within the 

genotypic display presented in the Hatchery is the only mode 

provided to determine sex (pictured in the right display in 

Figure 3). Thus, Challenge 2.1.1 was the first challenge that 

learners had to depend on only a genotypic representation for 

sex determination.  

  This challenge is in the initial stages of the game since it 

is important that students learn the genetic component of sex 

and how it is represented genotypically. In order not to 

overwhelm novice learners, the initial tasks presented should 

have low task variability, with variability increasing as they 

progress and gain experience, encouraging acquisition and 

transfer between various representations. Data seems to 

indicate that the variability created by the shift in available 

genetic information in Challenge 2.1.1 created a short-term 

rise in cognitive load–possibly representing extraneous load 

for some learners. However, it can be observed within Figure 

1 that students effectively adjusted to this more limited 

information set in the following challenges. Alongside support 

from the ITS, the eventual acquisition of the varied genetic 

information representations is supported by the lessening 

intrinsic load of the learners. Evidence if this conclusion is 

supported by a lack of hint upsurges in later challenges 

presenting evidences for this concept. 

 Based on an analysis of hint score data and a review of 

mapped evidences in these challenges, the ECD framework for 

this concept was mapped correctly.  

 

 
Figure 2. Challenge 1.2.1 

 

 

 
Figure 3. Challenge 2.1.1 

 

 

 

 

 

External Instructional Guidance 

 

 
Figure 4. Hint Trajectories for Simple Dominance (upper) and 

Recessive Traits. 

 

Learners historically have struggled with the 

interrelated concepts of dominant and recessive traits, and how 

they are expressed phenotypically and genotypically. While 

the interdependence of these concepts raises the intrinsic load, 

extraneous load is raised in the game due to a strong shift in 

representational form from the upper and lowercase letter 

forms (e.g., WW, Ww, ww) used in most textbooks and 

learning materials to the underlying genotypic form and 

resulting phenotypic expression, as seen in Figure 2. For 

dominant traits with drakes (e.g., wings), the fact that multiple 

combinations of alleles will result in a correct solution may 

hide a lack of full understanding of dominant versus recessive 

traits. The right-hand side of the Recessive Traits (LG1.C2b) 

graph in Figure 4 shows where challenges requiring 

knowledge of recessive traits (e.g., horns) begins to be 

introduced along with the resulting spikes in hint scores. The 

continued spiking seems to indicate that the game experience 

has not resolved this conceptual struggle for some students.  

A review of the ECD mapping of evidences for these 

two concepts points to the challenges of separating the 

intertwined concepts of dominant and recessive. For example, 

the spike in hint score for Challenge 2.3.4 (Figure 4) occurs 

for a task focused on a recessive trait (horns) and should not 

be triggering hints related to dominance, pointing to the 

difficulty of defining evidence at the trace data level for these 

two concepts. It further calls into question whether we can 

assume that the dominant trait concept has been mastered by a 

majority of students even though the Simple Dominance 

(LG1.C2a) graph has flattened on the right side.  

In summary, DGBL environments should reflect 

prior understanding of concepts as a means to anchor in 

existing knowledge structures in order to promote both the 

acquisition and transfer of knowledge. In this case, a possible 

solution is that the traditional upper and lowercase letter forms 

of dominance and recessive could be integrated into the 

representational forms used in the game. Similarly, the ITS 

hints should also integrate this form and to treat the 

composition of hints holistically across these two concepts to 

more fully address student confusion. 
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Spatial Separation of Related Elements 

 

 
Figure 5. Hint Trajectories for Incomplete Dominance 

 

For the concept of incomplete dominance, hint score 

data (Figure 5) indicates that students are able to correctly 

solve challenges within an acceptable range of intrinsic load. 

However, the isolated upsurge of hints is seen when the game 

introduces the Breeding Room (Figure 6). As pictured in the 

game display, manipulations to one parent’s alleles are made 

in congruence with those of the other parent. Thus, the 

introduction of the Breeding Room is an example of a 

representational shift that creates variability-related load for 

some students. In addition, this representational form may 

create additional extraneous load due to its spatial layout.  

That is, students must evaluate the genotypic attributes of one 

parent (e.g., Female) to inform decisions of manipulations of 

the other parent’s (e.g., Male) genotype in an attempt to breed 

the target drake. Parents are visually on the far right and left of 

the screen, separated by the area where the clutch (i.e., a batch 

of drakes) is to be presented. Since the information from both 

sides of the display must be processed simultaneously to 

complete the task, students suffer from extraneous load due to 

the inability to visually process both the Male and Female 

representations simultaneously, adding to the working 

memory load. Based on an analysis of hint score data and a 

review of mapped evidences in these challenges, the ECD 

framework for this concept was mapped correctly.  

 

 
Figure 6. Challenge 4.2.5, Breeding Room 

 

CONCLUSION 
 

 This investigation utilized cognitive load theory and 

ECD to analyze hint trajectories of select learning concepts 

within Geniventure to inform potential game design revisions 

intended to improve student learning opportunities. In the 

context of the game, cognitive load theory and ECD 

frameworks consider how effectively: 1) the designed display 

of needed information for the learning task responds to known 

limitations of human cognitive architecture, and 2) the ITS 

identifies and responds to evidences of student mastery of key 

genetics concepts. Through these avenues, we can attribute 

explanations to fine-grained data that go beyond post-hoc, 

summative assessment of student conceptual understanding.  

 The results of this study point to the utility of hint 

generation patterns to identify specific game challenges that 

should be scrutinized more carefully for potential game design 

revisions. Considerations of task variability (and its associated 

information representations), prior knowledge, and working 

memory load, work to highlight ramifications of game design 

on student learning outcomes. Further, it provides guidance to 

the design of ECD frameworks which drive hint generation in 

the ITS.  

This study needs to acknowledge the limitations of 

our approach. Identification of hint upsurges was done 

qualitatively and could, in fact, be created by factors not 

considered by this analysis. Perhaps more importantly, the 

standardized hint scores represent the aggregation of all 

students and do not consider individual student differences. 

Finally, while our analysis points to potential design revisions 

to the game, these revisions have not been implemented and 

assessed for efficacy. 
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