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ABSTRACT

Use-Modify-Create (UMC) has gained recognition as a viable scaf-
folding approach for student programming activities, but little is
known about how UMC could support CS learning in game-based
learning environments. We designed and developed a game to teach
middle grade students (ages 11-13) CS through block-based pro-
gramming challenges. The game integrates a UMC pedagogical
framework to promote successful student outcomes for a wide vari-
ety of student abilities, including those without prior programming
experience. Utilizing a mixed-methods research design, we investi-
gated how the game influenced student learning of CS concepts and
the role of UMC on the problem-solving strategies students applied
to complete the game. In particular, we were interested in how
prior experience would moderate these outcomes. Results from a
multilevel model of students’ pre-and post-assessment scores (N =
77) on a CS concepts assessment indicated that all students, regard-
less of prior programming experience, showed significant learning
gains from pre to post after playing the game. Qualitative results
revealed that the UMC scaffolding progression provided students,
particularly those with little to no prior programming experience,
with the foundational knowledge needed to progress through the
game levels and challenges. Specifically, we found that the Use
phases of the game reduced novice students’ cognitive load and
facilitated the necessary CS conceptual understanding to solve the
open-ended programming tasks encountered in the game’s Modify
and Create phases. Our findings demonstrate the efficacy of UMC
to support the learning of novice programmers in a game-based
learning environment while not to the detriment of those more
experienced.
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1 INTRODUCTION

Computational thinking (CT) and computer science (CS) are now
recognized as essential skills and practices necessary for produc-
tive participation in a global society [15]. Thus, CS education has
become critically important for K-12 students, as they must be af-
forded opportunities to learn and develop these skills throughout
their formal schooling [42]. One increasingly popular mechanism
for developing K-12 students’ CT and CS skills has been through
computer programming activities [4, 19]. Over the past decade,
tools such as Scratch and Alice have been integrated into school
course designs and curricula to teach CS concepts to K-12 learners
[2, 43].

Middle grades (ages 11-13) have been identified as a pivotal point
in students’ educational trajectories where they should have ample
opportunities to learn and develop favorable dispositions towards
STEM domains such as CS [16, 44]. However, middle school stu-
dents engaging in CS-related activities such as programming often
possess wide variability in their prior knowledge and experience
[6, 18]. This highlights the importance to developing pedagogical
strategies and learning environments that are inclusive and en-
gage novice learners, especially those from populations historically
marginalized from participation in CS-related activities [12, 33].


https://doi.org/10.1145/3430665.3456349
https://doi.org/10.1145/3430665.3456349

The potential of digital game-based learning to promote in-
creased student engagement and learning outcomes has received
considerable research interest across disciplines (e.g.,[23, 37]). This
line of research has demonstrated that digital games can facilitate
enhanced learning outcomes for students [10, 45], as well as in-
creased motivation for learning when compared with traditional in-
struction [9, 30]. In particular, immersive game-based learning that
integrates socio-constructivist learning principles with problem-
based scenarios can offer students rich and engaging learning ex-
periences [26]. However, benefits from digital game-based learning
are often dependent upon learning environment design strategies
that appropriately manage the level of challenge players experi-
ence by including scaffolding and support during gameplay [8, 22].
The integration of appropriate learner support mechanisms within
digital games are important to ensure that learners stay motivated
and avoid frustration [39, 45].

Our research team recently developed an immersive game-based
learning environment (GBLE) designed to develop middle school
students’ CT practices, CS concepts, and programming skills. To
support a wide range of prior experience in programming we em-
bedded a Use-Modify-Create (UMC) scaffolding progression within
the game design [25]. This pedagogical approach was employed to
ensure that all students, including those with little to no prior CS or
programming experience, could successfully engage with the game
and learn targeted CS concepts [25]. While UMC strategies have
been popular with general classroom-based programming activities,
research into its efficacy is still in its early stages, and even less
research has been conducted on its implementation in GBLEs. This
paper investigates the efficacy of a UMC progression within a GBLE
to teach middle school students CS and programming concepts. The
following research questions guided the investigation:

1. Do middle school students learn CS concepts through a CS-
focused game-based learning environment that integrates a UMC
framework accounting for their prior experience?

2. How does a UMC progression integrated within a GBLE sup-
port middle school students’ problem solving and learning of CS
concepts?

2 RELATED WORK
2.1 UMC Progression

UMC is an increasingly popular pedagogical framework for sup-
porting CT and CS [24, 28, 38]. Originally proposed by Lee et al.,
UMC is a three-stage progression designed to scaffold learners as
they gradually encounter increasingly complex CS learning activi-
ties [25]. The approach often alleviates potential cognitive demands
and anxieties that can confront learners new to programming and
CS learning. In the Use phase, students are introduced and encour-
aged to inspect a pre-made program that they run to accomplish
a computational task. The Use phase is a highly scaffolded sce-
nario that enables students to explore and become familiar with
key CS and programming concepts, gradually building their con-
fidence and competence. The Modify phase is characterized by a
computational task that challenges students to utilize their newly
acquired knowledge to make modifications to an existing or par-
tially completed computational artifact to accomplish a design task.
This phase is considered an interstitial step where scaffolds are

faded as students explore how small refinements in code affect
programs. Finally, in the Create phase students are presented with
a completely open-ended computational task in which they apply
their new understandings to develop a new computational artifact.
The goal is that students are able to purposefully reflect upon and
apply conceptual understanding and programming actions taken
in the Use and Modify phases to create their own program.

2.2 Prior Research on the Use of UMC

Within the past couple of years, the CS education community has
witnessed an increased focus on the development and research
of K-8 CS/CT-related activities that utilize UMC as a pedagogical
framework (e.g., [1, 35]). Results from this work have delivered
promising evidence that the approach is efficacious for students,
particularly those who lack prior programming experience. For
example, Lytle et al. conducted a quasi-experimental study with a
UMC condition and control group for a four-day CT-infused science
lesson where students created a Food-Web simulation using the
Snap! programming environment [28]. Students in the UMC group
did not experience a detrimental gradation of difficulty in the lesson
progression when compared with the control group and reported
an increased sense of ownership of their computational artifacts.
Franklin et al. analyzed the impact of the UMC approach to support
student learning of CS concepts within a Scratch curriculum [11].
They found that UMC promoted student learning of CS concepts
with the introduction of specific programming blocks and concepts
during Use and Modify phases, which enabled students to extend
their new knowledge within the Create phase. One way of general-
izing findings to date is that UMC supported an optimal balance
of scaffolding and challenge necessary to move students through
their Zone of Proximal Development [11, 41].

The use of a UMC scaffolding progression has been extended
to support students’ CT experiences beyond a programming-only
context. Grizioti and Kynigos incorporated scaffolding based on
UMC to support students’ CT learning and the creation of digital
games using “game modding” techniques that enabled students to
first play and inspect an already made game, then modify a “half-
baked” version with “buggy behavior,” and finally create their own
game designs [13]. The authors found that when all three stages
were embedded within the game design approach, it provided a rich
context for facilitating CT skill development. We were inspired by
this earlier work to incorporate the UMC framework into the design
of our digital GBLE to support students’ understanding of CS and
programming concepts. To our knowledge, while popular in the K-8
grades, the UMC scaffolding framework has not been integrated
into a GBLE specifically designed for promoting middle school
students’ CT and CS learning with block-based programming. Thus,
we found this context to be a unique opportunity to investigate the
efficacy of such an approach for supporting students’ CS learning.

2.3 Elements of Effective GBLE

Although GBLEs hold enormous potential for increased student
learning in a variety of subject areas (e.g., [7, 34]), prior research
indicates that game developers must consider the intricate balance
between challenge and skill [17]. Hamari et al. conducted a path
analysis to investigate the relationship between students’ perceived
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Figure 1: Example screenshots of the Use-Modify-Create scaffolding progression within the game-based learning environment
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challenge, skill, engagement, immersion, and learning [17]. Their
findings indicated that challenge, skill, and engagement all had
significant positive effects on learning and concluded engagement
can be promoted with optimal levels of skill and challenge [17].
Israel-Fishelson and Hershkovitz recently studied the relationship
between persistence and difficulty in a CT-focused GBLE for ele-
mentary students [20]. They found a positive relationship between
the two, however, they caution that the burden is on game devel-
opers to ensure an alignment between learners’ abilities and the
challenges that they are tasked with solving. The Game Develop-
ment for Computer Science Education working group met at ITICSE
‘16 to promote the use of GBLE for CS education [21]. In alignment
with the findings noted above, they asserted that students need an
optimal balance of challenge and support to stay motivated and
engaged within these learning environments. Therefore, they em-
phasized the importance of design elements such as engagement,
differentiated instruction, and deliberate practice. In addition to ad-
vocating for use of best practices and educational theory to inform
CS-focused GBLEs, they also underscored the need for evaluation
of these resources to determine their efficacy.

2.4 The ENGAGE GBLE

The ENGAGE GBLE was designed to promote CT as well as broad-
ening interest in CS for middle grades students. In the game, stu-
dents assume the role of a protagonist who has been sent to rescue
an undersea research facility whose computing infrastructure has
been commandeered by a nefarious researcher. Students are tasked
with navigating through a series of interconnected rooms within

the undersea research station, in which they are presented with
computational programming challenges they must solve using a
block-based programming interface to control devices within the
rooms. The UMC framework informed the design of the game and
the progression of the coding challenges, while the CS concepts
addressed in each challenge was guided by the CS Focal Skills,
Knowledge, and Abilities (FKSA) framework [14]. The three the-
matic levels of the game (loops, variables, and conditionals) were
designed to facilitate CS and CT practices denoted in the FKSA
framework via a broad range of programming activities requiring
abstraction and algorithmic thinking. In order to provide students
with a UMC progression for each CS concept, students begin each
mission in the game by operating devices with pre-written pro-
grams for them to use and examine. Then, students encounter a
similar device with partially correct code for them to complete.
Finally, students are presented with a new challenge in which they
have to create their own code to solve a new problem. During the
“modify” and “create” levels of each mission, students are able to
navigate back to the “use” challenge for guidance if needed. These
levels were iteratively refined and developed through a series of
curriculum design activities with middle school teachers and stu-
dents. Figure 1 depicts example screenshots of programming tasks
for each phase: Use, Modify, and Create.

3 METHODS
3.1 Participants

Students at three different middle schools (one in Texas and two in
North Carolina) played the ENGAGE game as part of their formal



Table 1: Participants’ Demographics Information

Variable Category N=77 (%)
Grade 6th 35 45
7th 16 21
8th 22 29
No Response 4 5
Gender Male 31 40
Female 42 55
No Response 4 5
Prior High 16 21
Programming Low 57 74
Experience No Response 4 5
Ethnicity Black/African American 15 20
White 18 23
Hispanic/LatinX 13 17
Native American 2 3
Asian 1 1
Multiracial 1 1
Other 23 30
No Response 4 5

classroom learning experience. A total of seventy-seven students
provided consent to have their data analyzed as part of this study.
See Table 1 for participant demographics. Semi-structured virtual
interviews were conducted with ten students who attended the two
North Carolina schools (five at each school) after they completed
the game. All of these ten students reported little to no prior CS
and programming experience.

3.2 Data Sources

MG-CSCA. Eighteen items were selected from a validated instru-
ment (MG-CSCA) developed by Rachmatullah et al. [32]. Both the
ENGAGE programming challenges and the MG-CSCA were devel-
oped based on Grover and Basu’s FKSA framework, thus ensuring
alignment between student learning experiences in the game and
the assessment [14]. The MG-CSCA measures the understanding
of four core CS concepts, namely variables, conditionals, loops, and
algorithms, three of which compose the thematic levels of the game.
Thus, the 18 items we selected measured those concepts addressed
within the game. Students in this study took identical randomized
items pre and post gameplay. Chronbach’s alpha value was a =
.765.

Prior Experience. Data on students’ prior computer programming
experience was collected by using a 5-point Likert scale question
asking the frequency of exposure to programming experience prior
to participating in this study (1 = never, 5= every day). We followed
Rachmatullah et al’s methods to categorize students with low and
high prior experience in which students who selected 1 and 2 were
categorized as low experience, and students who chose the remain-
ing three options (3, 4, and 5) were categorized as high experience
students [32].

Semi-structured interviews. A set of questions intended to explore
students’ experiences, problem-solving strategies, affective states,
and conceptual understanding during gameplay were developed

to use in semi-structured focus group interviews conducted with
a subset of students. These questions were extended during the
interview processes based upon students’ responses. Some of the
questions included: “When you didn’t know how to solve a cod-
ing problem in the game, describe how you figured it out?’, ‘Was
there anything about the game that helped you solve the coding
challenges?’, ‘Did you learn anything new from the game?’ Four
focus groups were conducted and ranged in size from two to four
students. The interview process took between 15 to 30 minutes.

3.3 Data Analysis

3.3.1 Quantitative. Multilevel modeling (MLM) analysis was used
to answer the first research question. MLM is useful to examine
the changes or fluctuations in students’ CS concepts understanding
from one time-point to another (intra-variability) and from one
student to another student (inter-variability) [5]. This analysis is
appropriate for unbalanced data, such that when some students
took either pre- or post-test only [5]. Thus students with only
one test score were not dropped and still included in the analysis,
preserving statistical power. We tested the following equations:
Level 1 (Time):
CS Conceptual Understanding;t = fo;; + f1ir (Time) + fair + 1z

Level 2 (Student):
Boi (Mean of CS Understanding) = yoo + yo1 (PriorExperience) + ug;
P1i (Time) = y10 + y11 (PriorExperience)

The equation under Level 1 specifies the within-student relation-
ship of CS concepts understanding and test occasion (Pre-post).
The intercept foi; is the expected CS scores for i student when
the test occasion is 0, which is in the pretest (posttest coded as 1),
and the prior experience is 0, which is no to low prior computer
programming experience. The first slope Blit is called CS learn-
ing, indicating the changes in CS concepts understanding from
pretest to posttest. The r;; is the residual errors representing varia-
tion around the mean of CS concepts understanding. The intercept
and slopes in Level 1 become outcome variables in the student
level (Level 2). We used y19 and y11 to answer the first research
question as these intercepts represent CS learning and its prior
computer programming experience, respectively. Before testing the
above equations, a null model was run to examine whether we had
enough within- (62) and between-variability (rgo) in our data to
proceed with MLM. This null model consisted of only CS concepts
understanding without any predictors (slopes).

3.3.2 Qualitative. The interviews with students focused on elicit-
ing their experiences, perceptions of, and problem-solving strate-
gies during gameplay. All interviews were transcribed for analysis.
The interviews were analyzed using constant comparative methods
and went through three qualitative coding phases [40]. First, two
researchers completed multiple rounds of open coding, mostly line-
by-line of the transcripts, to capture each data segment’s essence.
In the second phase, through the axial coding process, the codes
gathered from the open coding process were grouped into more
abstract categories and subcategories, resulting in a codebook. Any
disagreements between the two researchers were discussed un-
til consensus was reached, which led to the modification of the



codebook. A third researcher was then trained on and utilized the
codebook to estimate the reliability of coding. The initial inter-
coder reliability was k = .763 indicating a satisfactory reliability
[29]. The last phase was selective coding, in which a central phe-
nomenon was deduced, and the interrelationship of categories and
subcategories were used to generate a constructive story focusing
on answering our research questions [36]. Interrelationships were
discussed through peer debriefing [31]. Memos of methodological
decisions, analytical ideas, and emerging themes were recorded
throughout the analysis [40].

4 RESULTS
4.1 Quantitative

The unconditional model was run first to gather evidence for suffi-
cient within- and between-students’ variances in CS conceptual un-
derstanding. The results showed a significant within- and between
students’ variances (p < .001), indicating that we could proceed
with MLM for further analysis. We found that 27% of variability in
CS conceptual understanding was within-student (62 = 46.19, p <
.001), and 73% was between-students (g9 = 127.90, p < .001).

Table 2 shows the MLM results. The results indicated a signif-
icant positive change in students’ CS conceptual understanding
from pretest to posttest (t = 2.06, p = .045). This meant that stu-
dents’ pretest scores (M = 48.57) were significantly lower than their
posttest scores (M = 51.78). In addition, we did not find that stu-
dents’ conceptual understanding was significantly associated with
their prior computer programming experience (¢t = -1.71, p = .090),
and students’ CS learning did not depend on their prior experience
(t =-0.87, p = .386). Therefore, our results indicated that all students
learned CS concepts by playing the ENGAGE game, regardless of
their prior experiences. This model accounted for 5% and 4% of, re-
spectively, within- and between-students’ variability in CS concept
understanding.

4.2 Qualitative

Interviews with students helped to explain the role of UMC in
providing support for student problem solving and learning of CS
concepts within the game. We organized our findings into four
major themes. First, student quotes revealed the importance of the
programming code provided in the Use phase of each game level.
Student comments like the ones below indicate that it facilitated a
fundamental understanding of the CS and programming concepts
needed for successful game completion:

“T'would have to say that first initial code that really gave me a feel
for how to code and how to put all the parts together.” (Student J)

“When you first start the level, I saw the example of how you first did
it. And then when you go on to the second one, you have to do it by
yourself. So I would say to definitely read over that first.” (Student B)

Secondly, we found that once students had acquired a basic con-
ceptual understanding of the code, they were then able to apply
problem solving strategies such as iterating, debugging, and testing
to solve the more complex programming challenges encountered
during the Modify and Create stages of each level.

“Well, if I didn’t know how to figure it out. I would look back to the
past [challenges] I saw and combine it with what I know now and try
to figure it out myself.” (Student C)

“When you start the level it shows you how it’s made so I went back
there, I looked at it, and I fixed what happened.” (Student E)

Third, student comments indicated that the Modify phase also
provided another important opportunity for students to inspect
and understand how the code worked:

“And also the bugs they showed me what to do like, A this is wrong,
and it made me look at the code before actually pressing Run.”
(Student E)

The UMC progression coupled with the narrative elements of
the game’s storyline seemed to provide an optimal amount of scaf-
folding and challenge that encouraged the students’ persistence
throughout the game.

‘T like what I learned, because I didn’t know nothing about coding
and I thought I was going to struggle, but the directions in there
made it way easier...I just wanted to continue to see what’s going to
happen next, like was [the antagonist] going to pop out of somewhere
and try to rush me.” (Student C)

“The next level would be something different, and I'd be excited to
figure out like, ‘Oh, what’s that?’ (Student B)

“What kept me going was knowing that I could beat the game if I just
kept trying.” (Student F)

‘Tt was interesting, so I just wanted to see what happened at the end
of the game.” (Student D)

Ultimately, the qualitative phase of our study helped to corrobo-
rate that the game’s narrative design integrated with a UMC scaf-
folding progression helped to level the playing field and promote
CS learning amongst all of the students, regardless of their prior
CS and programming knowledge.

5 DISCUSSION

This study demonstrated that the students in our sample who played
a CT/CS GBLE, ENGAGE, scaffolded with a UMC progression were
able to learn important CS and programming concepts. In addi-
tion those students who had little or no previous programming
were not disadvantaged in their learning experience. Qualitative
interviews with the participants suggest that the Use phase of the
UMC framework established an important starting point for novice
students to understand and interpret the functionality of the block-
based programming code and key CS concepts. These findings align
with the work of Lister and colleagues, who articulated a hierar-
chy of programming skills where novice programmers must first
understand basic code before they can move on to problem solv-
ing and writing code [27]. Thus, the UMC framework created a
scaffolding bridge that equipped students with the confidence and
knowledge to approach more complex programming challenges as
they progressed through the game. Furthermore, we believe that
UMC facilitated the development of schema used to devise problem-
solving strategies for accomplishing the programming tasks. This
is particularly important for middle grades students who often



Table 2: Unstandardized Coefficients (and Standard Errors) of CS Conceptual Understanding (Notes: Reference group/Intercept
= Pretest and Low Experience; no asterisk p > .05, *p < .05, **p < .01, ***p <.001)

Effects Parameter  Unconditional Model 1
CS Conceptual Understanding, fo

Intercept Y00 47.82 ***(1.49) 48.57***(1.74)
Prior Experience Yo1 -6.26 (3.65)
CS Learning slope, f;

Time(Post-test) Y10 3.22* (1.56)
Prior Experience Y11 -3.48 (3.97)

Random Effects
Between-student (7o)
Within-person fluctuation (¢?)

127.90%**(27.26)
46.19"**(10.08)

122.25*%(26.24)
43.66***(9.71)

need support choosing and executing appropriate problem-solving
strategies [3]. Results also indicated that the storyline, enacted as
a design element of challenge, motivated students to persist [21],
encouraging game completion for both novice and experienced
students.

Based on quantitative and qualitative data we found UMC to be
a robust scaffolding framework that helped to achieve a desired
balance of challenge and support for students who participated in
the study. Thus, this study exemplifies how UMC can be extended
beyond programming and computational modeling environments
(e.g., [11, 25, 28]) to optimize the user experience of a CS GBLE,
adding to the current corpus of both UMC and CS GBLE research
literature. Furthermore, our work enabled us to employ and evalu-
ate some of the design guidelines proposed by Johnson et al.[21]
for novel CT/CS GBLESs. This included designing game challenges
incorporating specific CS learning goals aligned to the FKSA frame-
work so that we had a clear pathway for our design and assessment
metrics [14]. Secondly, to increase engagement we utilized a nar-
rative, immersive storyline to capture and sustain learner interest
throughout gameplay [26]. Finally, the integration of UMC as a
scaffolding framework provided an outlet to address differentiated
instructional needs, offer opportunities for deliberate practice to
develop a stronger understanding of code functionality, and estab-
lished a model of progression that kept novice students within their
Zones of Proximal Development [21]. We concluded that this was
possible to achieve within our immersive storyline.

6 LIMITATIONS AND FUTURE WORK

There are limitations in this study that should be considered as read-
ers interpret our findings. Additionally, they provide opportunities
for future research. First, the results were only based on a single
group of students who all experienced the UMC framework within
the game design, without a control group for comparison. Thus,
this design may threaten the intervention’s internal validity and iso-
late the variable being investigated, i.e., UMC framework. As such,
future studies with a control group where students learn CS con-
cepts within a GBLE that does not include a UMC framework could
help ascertain additional evidence for the efficacy of the approach.
Secondly, although the current sample size was acceptable to run

a multilevel model analysis, the number of students categorized
as having high prior programming experience was small, which
might have impacted the statistical power. Finally, the qualitative
data was collected from a smaller subset of our participants who
volunteered to be interviewed by members of the research team.
Thus, there is the potential of sample and self-report bias. Hence,
future studies should invite more diverse students to the interview
process to gain a fuller understanding of their experience learning
CS concepts in a GBLE.

7 CONCLUSION

As CS becomes a part of formal K-12 learning experiences, it will be-
come imperative to find engaging resources that effectively support
the success of all learners. Additionally, the need for effective vir-
tual learning has become exceedingly crucial, and GBLEs have the
potential to be engaging platforms for CS learning. While GBLEs
can be engaging for students to learn CT and CS skills and prac-
tices, an appropriate amount of scaffolding is needed to support
students’ learning and persistence in a self-paced environment [21].
We found the integration of the UMC framework into our GBLE
for CS and CT skills to be effective for enabling the students in our
study, the majority of whom had little to no prior coding experience,
to persist and learn the concepts needed to successfully complete
the game. Thus, utilizing the UMC framework as a curricular guide
for game-based learning has merit for impacting middle school CS
and CT learning.
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