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ABSTRACT
Recent years have seen growing interest in modeling visitor en-

gagement in museums with multimodal learning analytics. In par-

allel, there has also been growing concern about issues of fairness

and encoded bias in machine learning models. In this paper, we

investigate bias detection and mitigation techniques to address

issues of algorithmic fairness in multimodal models of museum

visitor visual attention. We employ slicing analysis using the Abso-

lute Between-ROC Area (ABROCA) statistic to detect encoded bias

present inmultimodalmodels of visitor visual attention trainedwith

facial expression and posture data from visitor interactions with

a game-based museum exhibit about environmental sustainability.

We investigate instances of gender bias that arise between different

combinations of modalities across several machine learning tech-

niques. We also measure the effectiveness of two different debiasing

strategies—learned fair representations and reweighing—when ap-

plied to the trained multimodal visitor attention models. Results

indicate that patterns of bias can arise across different modality

combinations for the different visitor visual attention models, and

there is often an inherent tradeoff between predictive accuracy and

ABROCA. Analyses suggest that debiasing strategies tend to be

more effective on multimodal models of visitor visual attention

than their unimodal counterparts

CCS CONCEPTS
• Applied computing → Education; • Computing methodolo-
gies →Machine Learning.

KEYWORDS
Multimodal learning analytics, algorithmic fairness, museum-based
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1 INTRODUCTION
Measuring visitor engagement in informal learning environments,

such as museums and science centers, poses significant challenges.

Visitor engagement is a core component of learning in museums [7].

Engagement influences how visitors interact with museum exhibits,

form understanding, and follow up to learn more after museum

visits [7]. Recent advances in multimodal learning analytics have

been used to detect patterns of learner engagement by utilizing

multiple sensor-based data streams such as facial expression, pos-

ture, eye gaze, and interaction log data [3, 14, 28, 39]. Although

the benefits of incorporating multimodal data streams into models

of learner engagement has been demonstrated in both classroom

and laboratory settings [13, 27, 28, 31], investigating multimodal

analytics in informal settings is still in its early stages [17].

Recent years have seen significant advances in utilizing multi-

modal machine learning for a wide range of tasks [3, 5]. In parallel,

questions about algorithmic fairness for machine learning models

have also been a topic of growing concern [1, 12, 18, 19, 21, 26, 34].

Conceptualizations of algorithmic fairness often range from indi-

vidual and group fairness to quantitatively measurable “distance

metrics” that can be minimized through a fairness optimization

process [10]. Statistical formulations of fairness, such as equalized

odds, demographic parity, and equal opportunity, also come into

play [4, 8, 19]. In this work, we conceptualize algorithmic fairness

in terms of encoded bias, which emphasizes the potential risk of

machine learning models that have differential impact on different

groups of individuals. Considerations of algorithmic fairness in

machine learning-based models of museum visitor engagement are

important because museums often have missions to serve learn-

ers from a broad range of socio-cultural backgrounds. As machine

learning techniques are utilized to model visitor engagement in

https://doi.org/10.1145/3462244.3479943
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museums, there is a risk of inheriting implicit biases as well. Muse-

ums that utilize biased machine learning models to measure visitor

engagement may unwittingly tailor their exhibits in favor of these

biases, leading to different qualities of visitor experience across

different populations. This process can further reinforce encoded

biases during future data collection and model refinement phases,

causing further downstream effects [9].

A central component of visitor engagement is visual attention.

In this paper, we investigate automated detection and mitigation of

encoded bias in multimodal models of visitor visual attention with

an interactive science museum exhibit. We utilize data that was

captured from visitor interactions with a museum exhibit about

environmental sustainability, Future Worlds. We examine four

standard machine learning methods (random forest, support vector

machine, Naïve Bayes, decision tree) for predicting levels of visitor

visual attention using posture and facial expression data. We investi-

gate the predictive accuracy of multimodal variations of each model

compared to unimodal baselines. We also measure encoded bias

present within each model by performing slicing analysis across

gender groups using the Absolute Between-ROC Area (ABROCA)

statistic [19]. The ABROCA statistic measures the amount of bias

present by looking for differential behavior in model performance

between two sub-populations in the data. In combination with a

modality-level ablation study, slicing analysis aids in identifying

sources of bias that may necessitate corrective measures. Finally, we

examine the impact of two debiasing techniques, reweighing (RW)

[22] and learned fair representations (LFR) [43], on the accuracy

and fairness of multimodal machine learning models of museum

visitor attention.

2 VISITOR MODELING IN MUSEUMS
We draw on and extend the literatures on visitor modeling in mu-

seums, multimodal learning analytics, and algorithmic fairness. We

discuss each of these in turn.

2.1 Museum Visitor Engagement
Prior work has explored modeling learner engagement in formal

settings, such as schools and universities [11, 13–15, 42]. While

formal and informal learning environments share many core ob-

jectives, museum-based learning presents distinctive challenges

for measuring learner engagement, including short dwell times

and an emphasis on free-choice learning. Well-designed, engaging

exhibits frequently have very brief visitor interactions, and even

highly engaged visitors can have short dwell times [17]. Further-

more, museums often attract a diverse range of visitors in terms of

age, gender, and socio-cultural background. A promising approach

for measuring visitor engagement is to instrument an exhibit with

physical sensors, including webcams, depth cameras, eye track-

ers, and microphones dependent upon the context, to capture rich

multimodal data that can be modeled using multimodal learning

analytic techniques.

2.2 Multimodal Learning Analytics
Multimodal learning analytics has been the subject of increasing

attention in recent years and has shown significant promise for

modeling learning and engagement across a range of educational

contexts [2, 27, 30, 31, 35, 36]. For example, Sümer et al. examined

learner engagement using pose estimation and facial expression

data in school classrooms [35]. The authors generated feature repre-

sentations from student interactions with their neighbors using the

pose and motion data. The multimodal features were used to train

deep learning models for creating separate feature embeddings for

affect detection and attention detection, respectively. Sawyer et al.

showed that student models enhanced with facial action unit data

outperformed baseline unimodal models as well as models trained

only on composite emotions for predicting student engagement

[31]. Other studies have found that decision-level fusion with data

from multiple modalities, including temporal posture information

extracted from a Microsoft Kinect sensor, yields increased predic-

tive performance over unimodal models for affect detection [28].

Eye gaze has also been found to be a useful modality for measuring

engagement in classrooms [27, 30].

2.3 Algorithmic Fairness
To date, there has been limited work investigating algorithmic

fairness in multimodal learning analytics [24, 25]. Solutions to algo-

rithmic fairness often focus on statistical notions of fairness. Barrio

et al. provide a review of common conceptualizations of fairness

and other fair learning techniques [8]. The authors detail the math-

ematical frameworks underlying these definitions and propose a

probabilistic framework to compare definitions of fairness with

statistical independence. Mehrabi et al. present an extensive survey

of types of biases, and they also evaluate a series of bias mitigation

strategies [26]. Other recent work has focused on bridging the gap

between statistical notions of fairness and individual fairness. Rich

subgroup fairness, a formulation of fairness proposed by [23] and

closely related to [20], extends prior fairness metrics to include the

constraint that it must hold for all possible subgroups of the data.

An application of fast subset scanning, which is an anomaly detec-

tion algorithm, has been applied to detect bias across all subgroups

of the data in a black box fashion [44]. Slicing analysis using the

ABROCA statistic has been proposed as a generalizable method for

detecting bias over various thresholds, overcoming the limitations

of many statistical definitions of fairness [19]. In this paper, we ex-

tend this line of investigation by using slicing analysis to examine

the effectiveness of different de-biasing strategies (learning fair rep-

resentation and reweighing) in multimodal machine learning-based

models of visitor visual attention in science museums.

3 FUTURE WORLDS TESTBED EXHIBIT

Future Worlds is a prototype game-based museum exhibit about

environmental sustainability [17]. In Future Worlds, visitors in-

teract with a touch-based display to learn about environmental

sustainability by investigating the impacts of alternative decisions

made within a 3D virtual environment. Future Worlds offers

learners the ability to touch, swipe, and tap the screen while they

improve aspects of the virtual environment. The exhibit’s science

content centers on themes of water, energy, and food. The pri-

mary objective of Future Worlds is to enable visitors to learn

about sustainability in an engaging way by exploring alternative

modifications to a simulated environment with the goal of im-

proving its sustainability. Visitors’ interactions enable them to test
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Figure 1: Future Worlds interactive museum exhibit on sustainability.

hypotheses about different environmental decisions by exploring

cause-and-effect relationships between different components of

the simulated environment and examining informational dialogs

that impart knowledge about environmental elements (e.g., forests,

rivers, solar power, industrial farms, etc.). The science content in

Future Worlds is designed for learners ages 10-11. Prior studies

have shown that learner interactions with Future Worlds yield

enhanced knowledge about environmental sustainability concepts

and promising levels of observed visitor engagement [38]. Figure 1

shows an example of a visitor interacting with the Future Worlds
game-based exhibit.

4 MULTIMODAL DATASET
To investigate bias detection and mitigation in multimodal mod-

els of museum visitor attention, we utilized a multimodal dataset

capturing visitor interactions with Future Worlds in a science

museum. Learners from three different schools participated in the

study. Each school served a student population in which over 70%

of students came from economically disadvantaged homes. In total,

116 visitors between the ages of 10-11 participated. Each learner

completed both pre- and post-surveys that captured visitor informa-

tion such as demographics, science interest, sustainability content

knowledge, and engagement. The participant sample was 32.4%

Hispanic or Latino, 21.6% Black or African American, 11.8% Na-

tive American, 8% Asian, 3% Caucasian, and 7.5% mixed races. The

remaining 15.7% of students indicated that they preferred not to

respond. The gender makeup of the sample included 47 females

and 55 males while the remaining students did not provide gender

information. Data from 65 students were used to train the multi-

modal visitor attention models after removing students that were

missing either survey data or multimodal data.

Prior to engaging with Future Worlds, visitors were intro-

duced to the exhibit and the physical sensors were calibrated for

each visitor. Visitors interacted with Future Worlds for a max-

imum of 10 minutes (M = 3.97, SD = 2.24). During the study, the

Future Worlds exhibit was instrumented with physical sensors

and logging software to capture real-time posture, facial expression,

eye gaze, and interaction trace log data. Features extracted from

these data channels were utilized to develop multimodal machine

learning-based models of visitor visual attention.

Facial expression data was captured from an externally mounted

Logitech C920 USB webcam, and the video recordings were ana-

lyzed in real-time using the OpenFace facial behavioral analysis

toolkit [4]. Facial expression data has been widely used for model-

ing and predicting engagement [6, 27, 32, 33, 35, 37, 40]. OpenFace

allows for the automated detection of 17 distinct facial action units

(AU) for each face captured in the webcam’s field of view as well

as head pose and eye gaze estimation.

Using the Microsoft Kinect V2 for Windows, visitors’ postural

movements were tracked for 26 distinct vertices in 3D coordinate

space along with RGB and depth channel representations. Posture

has also been shown to be predictive of different affective states

through bodily pattern mining [13]. Analyzing a learner’s body

position and movement has also been shown to be effective when

combined with emotion templates in emotion recognition tasks

[28]. The Kinect sensor was positioned approximately five feet

away from each visitor in a front-facing arrangement.

Timestamped records of visitors’ interactions with the exhibit’s

multi-touch interface were captured through interaction trace log

data. These interactions were recorded at the millisecond granular-

ity and captured actions such as requesting more information about

a particular concept or modifying the in-game virtual environment.

A benefit of using an interaction-based modality to model visitor

attention is that such sensor-free modalities are more robust against

issues that frequently impact sensor-based modalities such as noise,

mis-tracking, miscalibration, and hardware failure.

Visitors’ eye gaze patterns were captured by employing an ex-

ternally mounted Tobii EyeX eye tracking sensor. Prior work has

shown that eye gaze can be used effectively in measuring engage-

ment [27]. Ray casting techniques were utilized to automatically

identify in-game targets of visitor’s attention. This process yielded

information including timestamps, eye gaze targets, and durations

of visitors’ fixations on regions of the exhibit’s interface.

4.1 Multimodal Features
Several predictive features were extracted from the collected data

based on prior work using multimodal learning analytics to predict
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museum visitor engagement [17]. Eight features were distilled from

the interaction trace log data, including the total number of times

that a visitor tapped on the interactive display and the total number

of times a visitor tapped to examine informational texts about

several in-game elements. Additional features distilled from the

trace logs included whether a visitor solved the game’s problem

scenario and the total number of times a visitor interacted with the

exhibit’s interface through actions such as opening and swiping

through different dialogs and modifying the virtual environment.

Facial expression features were extracted from the facial action

unit data captured by the OpenFace software. To calculate the dura-

tion of each AU’s presence during a visitor’s interactions with the

exhibit, the intensity of each AUwas standardized and subsequently

recorded only if the present intensity exceeded one standard de-

viation above the mean intensity. Each AU’s calculated duration

only includes intervals when the recorded intensity was prolonged

for more than a half-second to avoid capturing noise due to micro

expressions. The duration was calculated for 18 AUs, and 36 addi-

tional features were generated using the standard deviation and

maximum values for each AU’s intensity.

Posture-based features were extracted from four skeletal vertices

tracked by the Microsoft Kinect: head, upper back, mid back, and
neck. The minimum, maximum, median, and variance of the (x, y, z)

coordinates for each vertex were used as features. Two additional

posture-based features were also extracted. Total postural change

was calculated from the summative change across all vertex coor-

dinates. Total change in terms of the Euclidean distance from the

Kinect sensor was calculated across all vertices as well. In total, 18

posture-based features were extracted from the raw Kinect data.

Eye tracking data captured from each visitor was mapped to

predetermined areas of interest (AOIs) to quantify the duration

a visitor was fixated on a particular region of the exhibit’s inter-

face. Informed by prior research, gaze fixations longer than 210

milliseconds were included as part of an AOI’s total gaze duration.

Gaze durations were calculated for four distinct AOI categories: vir-

tual location (AOI-Location), environmental sustainability selection

menus (AOI-Menu), environmental sustainability textual informa-

tion and imagery (AOI-Information), and the navigational interface

(AOI-Interface). This categorization was determined based upon

the gaze targets’ functional role in the game (e.g., imparting infor-

mation about science content, navigating the interface, enacting

a change to the simulated environment, etc.) AOI-Location refers

to nine distinct regions within the virtual environment. AOI-Menu

encompasses the in-game elements a visitor interacts with while

modifying the virtual environment or querying a specific element

for more information. AOI-Information represents the interface

within Future Worlds that presents science content to the visitor,

such as informational text or imagery pertaining to a particular

aspect of the virtual environment (Figure 2). Finally, AOI-Interface

represents elements within the navigational interface such as the

arrows and buttons used to begin, pause, or exit the game. It should

be noted that the four AOIs are disjoint groups: a visitor’s eye gaze

can only fall into a single AOI at a time, as AOIs do not overlap in

this work.

To serve as a measure of visitor attention toward the exhibit’s

science content, we utilized the proportional time that visitors spent

visually fixating on AOI-Information. Specifically, we calculated

Figure 2: Visualization of visitor attention captured by AOI-
Information.

AOI-Information’s proportional gaze fixation time by dividing the

AOI’s total duration by the total gameplay time for each visitor.

The proportional fixation time of the AOI was categorized into

“high” and “low” groups based on a median split (median = .031)

across all visitors. This feature served as the target variable for our

visitor attention models. This feature was chosen based upon the

premise that the greater amount of time spent visually fixating on

AOI-Information, the more visual attention was being dedicated

toward the exhibit’s science content. Attentional management has

been shown to be correlated with high levels of engagement in

classroom settings [11, 29, 41].

5 METHOD
We investigate encoded bias in multimodal models of visitor visual

attention using four machine learning techniques: random forest

(RF), support vector machine (SVM), Gaussian Naïve Bayes (NB),

and decision trees (DT). We evaluate the predictive performance of

these models for identifying visitors who spend a high amount of

time fixating on science-related informational dialogs in the Future

Worlds exhibit. We then performed a slicing analysis, in which

we evaluated the predictive performance of the models on different

“slices” of the data—across gender lines in our case—to detect the

presence of bias using the ABROCA statistic. Finally, we investigate

the use of the ABROCA statistic to measure the effectiveness of two

debiasing techniques, learned fair representations and reweighing

using AI Fairness 360 (AIF360). AIF360 is an extensible toolkit

for detecting and mitigating bias in machine learning models [4].

The toolkit supports a broad range of debiasing strategies in the

preprocessing, in-processing, and post-processing stages of the

model training pipeline.

5.1 Visitor Visual Attention
During preprocessing, we removed the interaction-based modality

because it was linearly related with the target variable. Interaction

data included information such as whether a visitor completed

the game, the total number of gameplay interactions within the
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environment, the duration of a visitor’s interaction as well as any

variable associated with the four main AOIs. Each visitor attention

model was evaluated using nested cross-validation. Hyperparame-

ter tuning was performed using 3-fold inner cross-validation within

5-fold outer cross-validation. For the random forest models, we op-

timized the number of features used as splits, the maximum tree

depth, and the maximum number of trees used before majority

voting. The hyperparameters tuned for the SVM models were the

margin width, the kernel type, and the gamma weighting parameter.

The decision tree hyperparameters included the splitting criterion,

the maximum number of features used, the maximum tree depth,

and the minimum number of samples per split. The Gaussian Naïve

Bayes model needed no hyperparameter tuning by design. Prior to

training the models, the input features were normalized between

0 and 1, and univariate feature selection was performed using the

chi-squared distribution, with the ten most predictive features for

each modality being retained. Data normalization and feature se-

lection were performed using the training set to protect against

data leakage. Area Under Curve (AUC) was selected as the primary

metric to assess model accuracy, and it was used to determine the

optimal hyperparameter configurations for each model during the

inner cross-validation step. The optimal hyperparameter values

were then used to train and evaluate each model during the outer

cross-validation step.

5.2 ABROCA
The models trained during this phase were also used to perform

slicing analysis. To perform the slicing analysis, the data was split

along gender lines to evaluate the model’s performance in terms

of ABROCA [169]. ABROCA examines a model’s predictive perfor-

mance across a range of classification confidence thresholds rather

than restricting comparisons to fixed thresholds. The ABROCA

metric is calculated by taking the absolute value of the difference

between a model’s AUC scores for different subpopulations of the

data. ABROCA values closer to 0 show that a model’s performance

across subgroups is equal and therefore represents a lower amount

of bias. The ABROCA statistic was chosen because it does not rely

on a “similarity metric”; it is applicable across a range of confidence

thresholds and can be empirically computed without requiring

additional data collection. Each model’s predictions from the cross-

validation phase were used to generate an ROC curve to evaluate

themodel’s predictive performance in terms of AUC and to generate

the ABROCA score to quantify the bias present.

We evaluated the predictive performance and ABROCA score of

the four machine learning models using multimodal data consist-

ing of facial expression and posture combined using feature-level

data fusion. The multimodal models were compared against uni-

modal models induced from each individual modality. We then per-

formed a series of ablations to examine alternative combinations of

modalities and machine learning techniques. The relationships and

tradeoffs between the AUC and ABROCA metrics were examined

to determine whether enhancing a model’s fairness using debias-

ing techniques had a substantial impact on a model’s predictive

capacity.

5.3 Debiasing
Two debiasing strategies were evaluated: learned fair representa-

tion [43] and reweighing [22]. Learned fair representation (LFR)

formulates fairness as an optimization problem of finding an inter-

mediate representation of the data with opposing goals of encoding

the data well while simultaneously attempting to obfuscate infor-

mation related to protected attributes such as ethnicity and gender.

The authors achieve this by mapping everyone, represented as a

point in the input space, to a probability distribution in a new rep-

resentation space. In this new space any protected information

about an individual, such as ethnicity or gender, is lost while trying

to maximally preserve information about the other attributes. A

fair representation of the data is learned through an optimization

process of mapping to a prototypical representation of the data that

minimizes statistical parity. The intermediate representation can

be used in fair transfer learning such that downstream models may

benefit from less biased predictions.

Reweighing (RW) is a technique that attaches weights to each

(group, label) combination in the dataset to ensure fair classification.

It assigns tuple objects that belong to a particular group (e.g., gen-

der) and contain a positive class label (e.g., high attention) a higher

weight than objects in the same group with a negative class label.

The weights are proportional to the expectation for group member-

ship given class labels to the observed counts. Bias is defined by the

difference in expected probabilities and the observed probabilities.

If the expected probability is higher than the observed probability

then the predictions are said to be biased. By assigning weights

to each tuple according to its class label and group membership

and then multiplying by its frequency it can be shown that the

resulting dataset becomes unbiased and can further be used to train

a bias-free classifier.

6 RESULTS
The results of the experiments are summarized in Tables 1 and 2.

Table 1 shows the AUC scores for each model with the top 20%

best performing classification techniques shown in bold. Random

forest tended to achieve higher performance on average across all

modality combinations and debiasing strategies. The highest overall

predictive accuracy was achieved by the multimodal random forest

model (AUC = .832). Although Naïve Bayes had on average better

scores than decision trees (Mean = .721, Mean = .627) across all

modalities and debiasing strategies, the latter exhibited the next

most accurate classification performance (AUC = .783). In contrast,

SVM models achieved comparatively low AUC scores (Mean =

.459). In general, the results indicate that random forest and Naïve

Bayes models yielded the highest AUC scores on average across all

experiments (Table 1). Further analyses indicate that Naïve Bayes

showed the least variance from Table 1 (Var = .001) when compared

to both random forest and SVM both containing a variance of .003,

implying that Naïve Bayes may not be as strongly impacted by

changes in modalities or debiasing strategy.

The ABROCA results are shown in Table 2 with the lowest

ABROCA values in bold, signifying the models containing the least

amount of bias. Bolded values denote the lowest 20% of ABROCA

scores. The lowest mean ABROCA score was achieved by the Naïve

Bayes models across all non-debiased and debiasing methods. The
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Table 1: AUC values for multimodal, Kinect, and OpenFace models across debiasing strategies.

No Debiasing
Model Multimodal Kinect OpenFace

Random Forest 0.832 0.811 0.807
SVM 0.398 0.453 0.398

Decision Tree 0.724 0.599 0.616

Naïve Bayes 0.730 0.704 0.722

LFR
Model Multimodal Kinect OpenFace
Random Forest 0.777 0.659 0.664

SVM 0.538 0.530 0.531

Decision Tree 0.446 0.538 0.630

Naïve Bayes 0.694 0.754 0.685

RW
Model Multimodal Kinect OpenFace
Random Forest 0.788 0.811 0.807
SVM 0.402 0.456 0.425

Decision Tree 0.661 0.647 0.783
Naïve Bayes 0.777 0.704 0.722

Table 2: ABROCA values for multimodal, Kinect, and OpenFace models across debiasing strategies.

No Debiasing
Model Multimodal Kinect OpenFace

Random Forest 0.140 0.147 0.111

SVM 0.247 0.040 0.056

Decision Tree 0.002 0.098 0.054

Naïve Bayes 0.183 0.126 0.203

LFR
Model Multimodal Kinect OpenFace
Random Forest 0.050 0.119 0.035
SVM 0.084 0.002 0.016
Decision Tree 0.017 0.117 0.251

Naïve Bayes 0.133 0.174 0.089

RW
Model Multimodal Kinect OpenFace
Random Forest 0.022 0.147 0.111

SVM 0.196 0.121 0.123

Decision Tree 0.063 0.073 0.111

Naïve Bayes 0.106 0.126 0.203

multimodal decision tree and the Kinect-only SVM with LFR were

tied for the lowest ABROCA scores across all tests (ABROCA =

.002). Random forest and SVM had similar mean ABROCA scores

and were associated with some of the least biased scores after debi-

asing. The results show that both Naïve Bayes and Random Forest

exhibit the lowest amount of variance of .001 and .002, respectively,

across both debiasing techniques. Figures 3, 4 and 5 show the slice

plots for the multimodal random forest model that achieved the

highest AUC score.

7 DISCUSSION
With regard to predictive accuracy, random forest was the best

performing model across all experiments, producing 6 of the 7 high-

est AUC scores. The multimodal and posture-only (Kinect) models

yielded the highest ABROCA values before the application of debi-

asing techniques, suggesting a risk of encoded bias. After applying

the LFR debiasing approach to random forest to generate a latent

representation of the data, we saw a reduction in ABROCA values

for each modality, with the facial expression modality showing

the largest reduction in bias (0.111 to 0.035; 68%). Application of

debiasing via reweighing for random forest reduced bias in the mul-

timodal model by 84% (0.140 to 0.022) although it did not reduce bias
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Figure 3: Slice plot along gender showing bias in the multimodal random forest model.

Figure 4: Slice plot along gender showing the reduction in bias for the random forest model with reweighing.

for either of the unimodal models. These findings demonstrate that

the two debiasing strategies are effective in mitigating bias present

in the random forest models of visitor visual attention based upon

using the ABROCA statistic for comparing models’ bias. In addition,

we observed that debiasing via reweighing for the multimodal data

greatly reduces bias while having a minimal impact on the model’s

visual attention classification accuracy.

Visitor attention models trained on multimodal data without

debiasing achieved the highest ABROCA scores, implying that the

bias present in the underlying features from each modality may be

associated with increasing complexity of the multimodal data. The

effectiveness of our debiasing strategies for the multimodal feature

set can be observed as both the LFR and RW debiasing strategies

achieved greater decreases in ABROCA scores for the multimodal

models than when applied to the unimodal baseline models. This

illustrates that the tradeoff between the ABROCA and AUC scores

was critical for the multimodal models, as there was a significant

impact from the application of the debiasing strategies.

The results in Table 2 also indicate that each machine learning

model responded differently to each debiasing technique. The RW
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Figure 5: Slice plot along gender showing the reduction in bias for the random forest model using learned fair representations.

method had little effect on the random forest and Naïve Bayes

models in terms of ABROCA, and it did not significantly impact

the predictive performance of the unimodal baselines. Both models

are robust to noise and outliers and therefore may be minimally

impacted by the weights of the RW method applied to the dataset.

However, the additive bias from the combination of modalities was

diminished by the RW technique, and in the case of random forest,

it benefited by having one of the lowest ABROCA scores overall.

Decision tree and SVM experienced an increase in classification

performance, but each model had varied results in terms of the

slicing analysis. The ABROCA scores for the facial expression-

based models increased for each model after debiasing, and the

posture modality showed an increase with the SVM as well. The

increase in classification accuracy for the SVM may be caused by a

balance in the separation between classes introduced by reweighing.

The LFR debiasing technique decreased the bias present in at least

one model for each modality, with the lone exception of Naïve

Bayes. The latent representations of the features provided by LFR-

based debiasing appear to be a more effective means of debiasing

when compared to reweighing in general. RW was effective by

demonstrating the lowest ABROCA values with low impact on

AUC for multimodal random forest models (2).

We can categorize each of these techniques by looking at to what

extent the decrease in a model’s classification accuracy affects the

model’s decrease in bias. LFR performs a more complex transforma-

tion on the training data compared to RW, and subsequently it has

a larger impact on a model’s predictive accuracy. This debiasing

technique can also have a generally large, possibly adverse impact

on bias reduction. The RW technique employs a relatively simple

transformation on the data that has a smaller impact on predictive

performance and ABROCA scores.

When determining which visitor visual attention models to de-

ploy within a museum, considerations of the models’ overall accu-

racy should be weighed against the risks associated with biased

performance. It is possible that biased performance within certain

subgroups has little tangible impact on visitors’ learning experi-

ences, thus imposing a negligible cost to the users of the model

(e.g., visitors, exhibit designers, museum educators, museum re-

searchers). Conversely, bias present in models of visitor attention

may introduce unfair treatment between different groups, rein-

forcing existing biases and creating new sources of inequity. Most

immediately, biased models of visitor attention could translate into

the creation of exhibits that are less engaging for many learners,

reducing overall engagement across the museum and visitor popula-

tion. Thus, it is likely advisable to balance between model accuracy

and bias minimization. The issue of determining an “acceptable”

amount of bias remains domain-specific and is a promising area of

future research.

8 CONCLUSION
Multimodal learning analytic techniques hold significant promise

for modeling visitor attention in museums by modeling multiple

concurrent perspectives on visitors’ behavioral cues. Many muse-

ums serve diverse learner populations with respect to age, gen-

der, socio-economic status, and cultural background. Algorithmic

fairness is a critically important issue in developing multimodal

machine learning-based models of visitor attention that are accu-

rate and free of encoded bias. We have presented a slicing analysis

approach for identifying and mitigating encoded bias in multi-

modal models of visitor visual. This approach utilizes the ABROCA

metric to quantify and evaluate bias within multimodal and uni-

modal visitor visual attention models, enabling analysis of different

debiasing strategies in terms of predictive performance and per-

formance differences between sub-groups. Results from a study
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using multimodal visitor interaction data from the Future Worlds

game-based museum exhibit suggest that multimodal random for-

est models yield accurate predictions of visitor visual attention, but

these models suffer from bias along gender lines. Debiasing via

reweighing was found to be effective in mitigating bias from mul-

timodal attention models while having low impact on predictive

performance. In addition, we found that different combinations of

machine learning techniques and modalities responded differently

to applications of different debiasing methods.

The findings suggest several promising avenues for future work.

Investigating encoded bias in multimodal visual attention models

based upon alternative machine learning architectures, including

deep neural networks, is an important direction for future investi-

gation. Another promising direction is developing an algorithmic

approach to debiasing that explicitly optimizes for the ABROCA

statistic; neither reweighing nor learned fair representations utilize

ABROCA to guide debiasing. Extending the debiasing strategies to

optimize for ABROCA may enable them to encompass both group

and individual fairness. A key attribute of the debiasing strategies

used in this work is that they focus on preprocessing data to ad-

dress sources of encoded bias. Further work should explore whether

the findings observed in this study hold when using other debi-

asing techniques such as adversarial debiasing. Finally, it will be

important to investigate the integration of debiased multimodal

models of visitor visual attention into museum exhibits to enable

run-time measurement and support of visitor experiences. This

capability has promise for enhancing museum exhibits’ capacity to

create learning experiences that are effective and engaging for all

learners.
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