

Position:
INTELLIBLOX: A Toolkit for Integrating

Block-Based Programming into

Game-Based Learning Environments

Sandra Taylor

Dept. of Computer Science

North Carolina State University

Raleigh, NC, USA

smtayl23@ncsu.edu

Wookhee Min

Dept. of Computer Science

 North Carolina State University

Raleigh, NC, USA

wmin@ncsu.edu

Bradford Mott

 Dept. of Computer Science

North Carolina State University

Raleigh, NC, USA

bwmott@ncsu.edu

Andrew Emerson

 Dept. of Computer Science

North Carolina State University

Raleigh, NC, USA

ajemerso@ncsu.edu

Andy Smith

 Dept. of Computer Science

North Carolina State University

Raleigh, NC, USA

pmsmith4@ncsu.edu

Eric Wiebe

Dept. of STEM Education

North Carolina State University

Raleigh, NC, USA

wiebe@ncsu.edu

James Lester

Dept. of Computer Science

North Carolina State University

Raleigh, NC, USA

lester@ncsu.edu

Abstract—Block-based programming languages reduce the

need to learn low-level programming syntax while enabling novice

learners to focus on computational thinking skills. Game-based

learning environments have been shown to create effective and

engaging learning experiences for students in a broad range of

educational domains. The fusion of block-based programming

with game-based learning offers significant potential to motivate

learners to develop computational thinking skills. A key challenge

educational game developers face in creating rich, interactive

learning experiences that integrate computational thinking

activities is the lack of an embeddable block-based programming

toolkit. Current block-based programming languages, such as

Blockly and Scratch, cannot be easily embedded into industry-

standard 3D game engines. This paper presents INTELLIBLOX, a

Blockly-inspired toolkit for the Unity cross-platform game engine

that enables learners to create block-based programs within

immersive game-based learning environments. Our experience

using INTELLIBLOX suggests that it is an effective toolkit for

integrating block-based programming challenges into game-based

learning environments.

Keywords—block-based programming, game-based learning, K-

12 computer science education, computational thinking

I. INTRODUCTION

Block-based programming has proven effective in teaching

computational thinking (CT) skills to novice learners by

decreasing cognitive load, promoting recognition of shapes

over recall of text-based syntax, and limiting the ability to create

syntax errors [1]. Block-based programming environments

have been used to create engaging learning experiences to

introduce students to programming, including environments

that support the creation of games and interactive artifacts [2],

[3], [4], [5]. Likewise, game-based learning environments have

been used to provide students with rich, immersive learning

experiences that have been carefully crafted to promote student

motivation and learning outcomes [6]. Consequently, the

integration of block-based programming into the core gameplay

of game-based learning environments offers significant promise

for supporting K-12 students in developing computational

thinking skills [7]. A key challenge facing educational game

developers seeking to leverage block-based programming in

game designs is the lack of a framework for embedding block-

based programming into immersive 3D games. While there are

several open source block-based programming toolkits

(Blockly, Snap!, Scratch), incorporating them into 3D game

engines is labor-intensive and limits their ability to be tightly

integrated with gameplay. This paper presents a toolkit for

integrating block-based programming within games created

with the Unity cross-platform game engine.

II. INTELLIBLOX

INTELLIBLOX is a toolkit that enables block-based

programming to be tightly integrated into the core gameplay of

immersive game-based learning environments developed using

the Unity game engine. Unity is a cross-platform game

development environment for creating 2D and 3D games on

computers, video game consoles, and mobile devices used by

millions of game developers worldwide. It is a popular platform

for building game-based learning environments for K-12

education because it supports tablet and WebGL builds of

games that run on iOS and Android tablets as well as

Chromebooks, which are quickly becoming the platform of

choice in schools. Thus, INTELLIBLOX facilitates bringing the

significant benefits of block-based programming to a wide

range of engaging gameplay activities. The design of

INTELLIBLOX takes into account key CT practices—developing

and using abstractions, creating computational artifacts, and

testing and refining computational artifacts—suggested by the

K-12 Computer Science Framework [8] in order to effectively

support the development of CT skills for students immersed in

game-based learning. In addition, INTELLIBLOX is designed to

support adaptive scaffolding in game-based learning by logging

fine-grained trace data linked to key computational thinking

practices and skills.

A. Requirements

 Building on our prior experience developing game-based

learning environments [9], [10] and integrating block-based

programming within a game-based learning environment for

middle school computational thinking [7], we have identified a

set of core requirements for integrating block-based

programming into immersive game-based learning

environments. These include the following key requirements.

 Integration with an industry-standard game engine. First

and foremost, INTELLIBLOX should provide a seamless

integration into a full-featured, cross-platform game engine.

This integration should allow for the direct manipulation of 2D

and 3D game objects, providing the ability to create fully

immersive experiences leveraging block-based programming

that are not easily created using simpler web-based toolkits. The

game engine should also be optimized for deploying WebGL,

Windows, macOS, Android, and iOS versions of the

game-based learning environment to support widespread K-12

classroom implementations.

 Enable adaptive scaffolding. Adaptive scaffolding, which

includes providing students with just-in-time feedback and task

selection, is critical to supporting effective learning in the

classroom [11]. To provide adaptive scaffolding, it is crucial for

INTELLIBLOX to enable analysis of student interactions during

block-based programming and to support dynamic inference of

students’ knowledge and skills. Thus, INTELLIBLOX should log

and report key features from student interactions at a fine-

grained level. In game-based learning environments, student

programming trace data can be used to assess student

knowledge and skills in the context of stealth assessment [7]

and extract salient patterns in students’ learning behaviors [12].

By logging student data at a fine-grained level, it is possible to

analyze student behaviors to proactively provide feedback and

hints to students [13]. Additionally, by supporting methods that

can analyze the sequential structure of the logged events, further

analysis can capture points in a particular student’s interaction

where he or she is struggling and failing to make further

progress.

 Promote computational thinking. A key requirement for

INTELLIBLOX is to foster computational thinking (CT) in K-12

students through a rich programming environment. CT involves

several key practices, including using abstractions, algorithmic

thinking, systematic information processing, and leveraging

computational tools for data analysis, modeling, or simulation

[14]. To support this, a rich set of programming blocks should

be provided, including variables, loops, conditionals,

modularity, and event handlers, as well as domain-specific

blocks, which can be collectively utilized to construct

programs. In association with the adaptive scaffolding

requirement, the programming blocks available to students

should be dynamically chosen and presented to students

according to students’ skills and knowledge.

 Flexible block palette. To facilitate instructional

scaffolding in block-based programming environments, it is

helpful to limit the number of blocks presented to beginning

students [15] and gradually increase the number of blocks as

students’ skills improve to prevent early frustration. In addition,

the ability to organize blocks into functionally similar palettes

is helpful.

Rich developer toolset. To ensure scalability, expedite the

addition of new programming blocks, and facilitate independent

testing outside of the game environment, it is important to

provide a rich developer toolset as well as developer

documentation [16] for creating and testing custom blocks and

building block palettes.

 De facto standard block-based programming. To create an

effective block-based programming environment, it is

important to use broadly accepted standards for block-based

programming languages within INTELLIBLOX [17]. More

specifically, INTELLIBLOX should provide a drag and drop-

based workspace containing interconnectable blocks displaying

natural language which provide graphical cues that reinforce the

rules of composition in order to reduce errors and frustration for

beginning learners.

B. Design and Architecture

We highlight the key design and architectural decisions in

the implementation of INTELLIBLOX below.

Game engine selection. With a focus on developing

immersive 3D learning environments targeting multiple

platforms, we selected the Unity cross-platform game engine as

the basis for INTELLIBLOX. Unity allows for rendering the

block-based programming UI on 2D UI objects as well as 3D

objects within the game world. Unity is optimized for several

platforms commonly used in K-12 classrooms, including

WebGL, Windows, macOS, Android, and iOS.

Leveraging Blockly. Blockly is an open source JavaScript

library for building visual programming editors [18] that is best

suited for integration within web-based applications as opposed

to 3D game engines. Though not ideal for use in Unity-based

learning environments, Blockly does provide a feature-rich and

well-established framework as an excellent starting point for

developing INTELLIBLOX. As such, we have leveraged as much

of Blockly’s existing open source code as possible. Specifically,

we have used Blockly’s grammar, Blockly’s data model, the

Blockly developer toolset, and Blockly’s “blocks-to-code”

generation mechanism. By using these features and capabilities,

INTELLIBLOX supports an easily extendable block palette and

the rapid creation of additional blocks necessary for

incorporating K-12 computational thinking concepts. In

addition, we have based the look and feel of our blocks on

Blockly.

While Blockly provides a good foundation, it should be

noted that there are several key missing components that are

required for creating an immersive game-based learning

environment featuring block-based programming gameplay.

 Direct manipulation of game objects by block-based

programs. To enable students’ block-based programs to

manipulate the gameworld, we have created a code generation

server based on Blockly and Node-blockly [19], which is

accessed via a REST API to translate block-based programs

into executable Lua code. This Lua code is then interpreted and

executed using MoonSharp [20], an open source Lua interpreter

that supports the execution of Lua code in Unity. This

enables access to the full Unity API through this block-based

program to Lua to Unity bridge.

 Block-based programming editor in Unity. INTELLIBLOX

features a drag and drop block-based program editor

implemented using the Unity UI system. INTELLIBLOX blocks

are dynamically generated at run-time as a series of Unity UI

components based on JSON definitions that are consistent with

Blockly block definitions.

 Interaction logs. To support adaptive scaffolding,

INTELLIBLOX supports the logging of all UI interactions, such

as creating and deleting blocks, connecting and disconnecting

blocks, changing block parameters, and current block locations

in 2D space as well as a progressive sequence of programming

artifacts. This event data stream supports the recording and

playback of coding sessions to facilitate analysis of students’

coding behavior to support real-time scaffolding [21].

III. ENGAGE: A GAME-BASED LEARNING ENVIRONMENT

BUILDING ON INTELLIBLOX

ENGAGE (Figure 1) is an immersive game-based learning

environment designed to develop computational thinking skills

for middle school students [7]. ENGAGE uses INTELLIBLOX to

integrate computational challenges into a rich storyworld. In

ENGAGE, students play the role of the protagonist who has been

sent to an undersea research facility to determine why all

communication with the station has been lost. As students

explore the station, they must progress through multiple levels

consisting of a series of rooms. Each room presents students

with a set of computational challenges they must overcome

using the INTELLIBLOX editor in order to advance to the next

area. For example, students are prompted to operate a

quadcopter (Figure 1) by writing a program using the

INTELLIBLOX editor (Figure 2) in order to get across a pit.

Students have to use multiple rotate blocks along with multiple

move forward blocks, or more efficiently with repeat blocks to

complete the task. As students progress in the game, they

encounter more complex computational challenges such as

writing a bubble sort algorithm and a data analysis activity. All

of the challenges within ENGAGE are in service of the game’s

narrative and are directly associated with concepts and practices

defined in the K-12 Computer Science Framework [8]. For

example, the framework’s Cybersecurity concept is conveyed

in ENGAGE challenges where students are required to write a

program to crack a security code via a brute force method.

Fig. 1. Screenshot of the ENGAGE game-based learning environment

Fig. 2. Screenshot of the INTELLIBLOX editor integrated into ENGAGE

IV.CONCLUSION

Fusing block-based programming with game-based learning

offers significant potential for motivating learners to develop

computational thinking skills. We have presented

INTELLIBLOX, a block-based programming toolkit that

integrates with an industry standard game engine, which

enables educational game developers to create immersive

game-based learning environments featuring block-based

programming gameplay challenges.

Initial results using INTELLIBLOX to develop ENGAGE, an

immersive game-based learning for middle school students,

suggest that INTELLIBLOX is an effective toolkit. We are also

leveraging INTELLIBLOX to create a new game-based learning

environment that engages upper elementary students in

immersive AI learning experiences as well as a digital

storytelling environment for upper elementary students that

features problem-based learning scenarios integrating

computational thinking with physical science activities. As

INTELLIBLOX matures through the design and development of

these learning environments, we will release it as an open

source project that can be used to develop other immersive

game-based learning environments.

ACKNOWLEDGMENT

The authors wish to thank colleagues from the IntelliMedia

Group for their assistance with this work. This research was

supported by the National Science Foundation under Grants

DRL-1640141, DRL-1934153, and DRL-1921495. Any

opinions, findings, and conclusions or recommendations

expressed in this material are those of the authors and do not

necessarily reflect the views of the National Science

Foundation.

REFERENCES

[1] D. Bau, J. Gray, C. Kelleher, J. Sheldon, and F. Turbak, “Learnable

programming: blocks and beyond,” Commun. ACM. vol. 60, pp. 72–80,

2017.

[2] “Gameblox,” https://gameblox.org. 2019.

[3] “Microsoft makecode for minecraft,” https://minecraft.makecode.com.

2019.

[4] “Scratch for second life,” http://web.mit.edu/~eric_r/Public/S4SL/. 2019.

[5] “MIT media lab lifelong kindergarten: project microworlds,”

https://www.media.mit.edu/projects/microworlds/overview/. 2019.

[6] M. Qian and K. R. Clark, “Game-based learning and 21st century skills:

A review of recent research,” Computers in Human Behavior, vol. 63, pp.

50–58, 2016.

[7] W. Min, M. Frankosky, B. Mott, J. Rowe, A. Smith, E. Wiebe, K. E.

Boyer, and J. Lester. “DeepStealth: game-based learning stealth

assessment with deep neural networks,” IEEE Transactions on Learning

Technologies, in press.

[8] “K–12 computer science framework,” https://k12cs.org/. 2018.

[9] J. P. Rowe, L. R. Shores, B. W. Mott, and J. C. Lester, “Integrating

learning, problem solving, and engagement in narrative-centered learning

environments,” International Journal of Artificial Intelligence in

Education, vol. 21, no. 1–2, pp. 115–133, 2011.

[10] J. C. Lester, E. Y. Ha, S. Lee, B. W. Mott, J. P. Rowe, and J. Sabourin,

“Serious games get smart: intelligent game-based learning environments,”

AI Magazine, vol. 34, no. 4, pp. 31–45, 2013.

[11] K. VanLehn, “The relative effectiveness of human tutoring, intelligent

tutoring systems, and other tutoring systems,” Educational Psychologist,

vol. 46, no. 4, pp. 197–221, 2011.

[12] T. W. Price and T. Barnes. “Comparing textual and block interfaces in a

novice programming environment,” In Proc. of ACM ICER’15, pp. 91–

99, 2015.

[13] T. W. Price, R. Zhi, and T. Barnes. “Hint generation under uncertainty:

the effect of hint quality on help-seeking behavior,” in Proc. of AIED’17,

pp. 311–322, 2017.

[14] S. Grover and R. Pea, “Computational thinking in K-12: a review of the

state of the field,” Educational Researcher, vol. 42, no. 1, pp. 38–43, 2013.

[15] M. Tsur, and N. Rusk. “Scratch microworlds: designing project-based

introductions to coding,” in Proc. of the 49th ACM Technical Symposium

on Computer Science Education, pp. 894-899, 2018.

[16] S. Dasgupta, S. M. Clements, A.Y. Idlbi, C. Willis-Ford, and M. Resnick.

“Extending scratch: new pathways into programming,” in Proc. of 2015

IEEE Symposium on Visual Languages and Human-Centric Computing

(VL/HCC), pp. 165-169, Oct. 2015.

[17] D. Weintrop and U. Wilensky, “To block or not to block, that is the

question: students' perceptions of blocks-based programming,” in Proc. of

the 14th International Conference on Interaction Design and Children, pp.

199–208, 2015

[18] N. Fraser, “Ten things we've learned from blockly,” in Proc. of 2015 IEEE

Blocks and Beyond Workshop (Blocks and Beyond), pp. 49–50, 2015.

[19] “Node-blockly,” https://github.com/mo4islona/node-blockly. 2019.

[20] “MoonSharp,” https://www.moonsharp.org/. 2019.

[21] A. Emerson, F. Rodríguez, B. Mott, A. Smith, W. Min, K. Boyer, C.

Smith, E. Wiebe, and J. Lester, “Predicting early and often: predictive

student modeling for block-based programming environments,” 12th

International Conference on Educational Data Mining, pp. 39–48, 2019.

